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ANZIAM Mathsport 2016 

 
The biennial Mathsport conference is proud to return to Melbourne for 2016. The City 

Conference Center venue of Victoria University was purposely chosen, given that it is close 

to the Melbourne Cricket Ground and to Melbourne Park with its myriad of sporting venues. 

Arguably, Melbourne could host a Summer Olympics with just the existing venues, with 

much of the activity near the City Conference Center.  

 

In addition to the scientific events, we have several social events planned that will take 

advantage of Melbourne’s great dining and sporting venues. On 10 July, the day before we 

start, there is a footy match between Carlton and Adelaide at the MCG. We will visit the 

National Sports Museum at the MCG on 11 July after day one. Our conference dinner on 12 

July is at nearby Young and Jackson pub at Flinders and Swanston.  

 

A major goal of the Mathsport conference is to provide a stage for leading thinkers in sports 

analysis in the Asia-Pacific to share some of their recent work and how it is making an 

impact in sport. This proceedings includes information about the 39 talks to be given at 

Mathsport 2016: three keynote talks, two guest talks, six talks on the AFL, five talks on 

analytic methodologies of general application, five on cricket, four on gambling, three on 

rugby, two on golf, two on tennis and one each on seven other areas. 

 

On behalf of my Organizing Committee colleagues Stephanie Kovalchic, Denny Meyer, Sam 

Robertson and Adrian Schembri, we look forward to hearing the presentations and we hope 

the attendees and readers of these proceedings will come away with many new ideas. 

 

Ray Stefani 
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Keynote Speakers 

Gary Mc Coy 

Gary and Mathsport founder Neville de Mestre, are working to develop a uniform metric for surf safety. 

The goal is to measure the level of danger in surfing competition as well as for recreational surfing 

activities. 

 

Ken Quarrie 

Ken is Senior Scientist for the All Blacks.  NZ Rugby employed him as their inaugural Injury Prevention 

Manager in 2000. The purpose of this role was to put in place an evidence assisted, nationwide injury 

prevention program for New Zealand rugby, with a special emphasis on the prevention of the most severe 

injuries. Subsequent to the introduction of the program, entitled RugbySmart, there has been a reduction 

of over 90% in the annual rate of scrum-related spinal injuries, and a reduction of over 50 over all 

permanently disabling injuries. 

 

Sam Robertson 

Sam wears many hats. He is Senior Sport Scientist for the Western Bulldogs, Senior Research Fellow at 

Victoria University and he provides research and innovation for Golf Australia. 

 

Guest Speakers 

Liam Lenten 

Liam is a Senior Lecturer in Applied Econometrics at the Department of Economics and Finance at La 

Trobe University, Melbourne. He has been there since 1997. Liam earned his honours Economics degree 

there in 1995; and then a Master of Commerce degree at the University of Melbourne. Liam then 

undertook his PhD thesis from 1999-2005, which highlighted his interest in exchange rate determination 

models and macroeconomic cycles. However, his research more recently has centred more on sports 

economics, specifically rules, regulation, incentives and athlete behaviour; with an emphasis on various 

forms of cheating (doping, match-fixing, etc.). Liam has held visiting positions at: University of Michigan 

(US); Massachusetts Institute of Technology (US); University of Otago (NZ); Lancaster University (UK); 

University of Exeter (UK) and Monash University (Aust). Liam has published 27 articles in peer-

reviewed journals, including European Journal of Operational Research, Sport Management Review, 

Journal of Sports Economics, Journal of Forecasting, Australian Journal of Management and Applied 

Economics. 

 

Western Bulldogs  
Mathsport will welcome coaching and playing representatives from the Bulldogs. 

 

 

https://www.linkedin.com/title/senior-scientist?trk=mprofile_title
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A STATISTICAL APPROACH TO ENHANCING PLAYER SKILL IN 

AUSTRALIAN RULES FOOTBALL: APPLICATION TO TEAM SPORT 

 
Sam Robertson 

a,b
 

 
a Institute of Sport, Exercise & Active Living (ISEAL), Victoria University 

b Western Bulldogs AFL Club 

 

Corresponding author: sam.robertson@vu.edu.au  
 

Abstract 
 

Principles of learning state that the specificity, progression and variety of skill training undertaken by an 

individual are associated with the level of improvement expected (Henry, 1968; Pinder et al., 2011). Despite 

this, the manner by which these principles are quantified in the field from a skill acquisition perspective is not 

well-established (Farrow & Robertson, 2016). This presentation provides an overview of the existing skill 

acquisition program at the Western Bulldogs AFL club. Specifically, it details how through blending 

traditional performance analysis, statistics and machine learning, interventions targeting the skilled behaviour 

of players have been implemented and evaluated. One example outlines the use of rule induction techniques to 

understand the dynamic interaction between task and environmental constraints in influencing player skill 

execution during matches and training (Newell, 1986). A second reveals the application of statistical process 

control approaches to monitoring player performance and progression. A third shows illustrations of modelling 

expected rates of development of players based on characteristics relating to their selection in the AFL Draft. 

Concepts worthy of future research are presented, including methods for integrating skill- and physical-related 

data, quantifying the contribution of the individual to team outcomes and optimising player rotation strategies.  

 

Keywords: Analytics, AFL, Team Sport 
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DEVELOPING A CLASSIFICATION OF PLAYER ROLES IN 

AUSTRALIAN RULES FOOTBALL 

 

 
Adrian Barake, Heather Mitchell, Constantino Stavros & Mark Stewart 

 
RMIT University 

School of Economics Finance & Marketing 
 Corresponding author: adrian.barake@rmit.edu.au 

 

ABSTRACT 

 

Australian rules football is an ever-evolving collision sport, based on the principle of territorial invasion. The 

nature of the game, coupled with both a large playing field and a high number of participants requires athletes 

with a range of increasingly dynamic and multi-faceted skills.  Players are required to contest possession, and 

both attack and defend.  Historically, the role, or position, of players has been linked to the location on the 

ground that the player primarily occupies. Champion Data (CD), the official supplier of statistics to the 

Australian Football League (AFL), currently utilizes seven ‘positions’ for classifying players: Key Defender, 

General Defender, Midfielder, Midfielder-Forward, Key Forward, General Forward and Ruckman.  CD 

assigns players to these positions on a season-by-season basis, rather than a match-by-match basis; with the 

classification based on subjective assessment.  The result of this approach is that for those players who have 

played in multiple positions (and there are an increasing number of such players), performance assessment is 

problematic as the performance indicators for each of these seven positions differ markedly. This research 

utilizes match statistics captured across each zone of the ground to perform a multi-nomial logistic regression 

to allocate a position to every player in each match.  This approach enabled the classification process to be 

performed on not only AFL games, but also second tier football games for which CD also collates statistics.  

An ability to classify players on a match by match basis will greatly enhance the value of the player statistics 

collected.  This will be particularly important to AFL recruiters when applied to secondary competitions.  In 

addition to mapping a player to existing positional classifications, a new segmentation of player positions 

based on a combination of player location and playing styles is being developed, extending the number of 

positional types. 

 

Keywords: Australian football, sports statistics, player classification 
 

1. INTRODUCTION 

The game of Australian football is a territorial invasion sport, played on a relatively large field with thirty-six 

on field participants. It has no off-side rule or other such restriction on a player’s movement during the course 

of a match.   This produces a fast moving game played by athletes required to have multi-dimensional skills 

and ever increasing fitness capabilities.  Each player is required to contest for the ball, defend against 

opposition scoring attempts and distribute the ball effectively when in possession.  Whilst a player invariably 

has a starting position and an identifiable role during the course of play, this is dictated almost exclusively by 

the strategy and tactics of a team - not the rules that govern the game.  There is currently no objective method 

for identifying the position of a player in each match, and this paper seeks to address this gap through the 

application of a multinomial logistic regression model. 

 

1.1 Australian football position classifications 

Historically, the position of players in Australian football has been linked to the location on the ground that 

each of the 18 players primarily occupies.  For many years the game was played in a manner where the starting 

position of a player would dictate the primary area on the ground that a player would occupy.  However, more 

recent advances, including increased player fitness and evolving coaching tactics has brought about changes to 

the location and position of players, such that they are now universally accepted as being markedly different 

from the traditional position classifications.  Champion Data (CD), the official supplier of statistics to the 

Australian Football League (AFL), currently utilizes seven positions for classifying players: Key Defender, 

General Defender, Midfielder, Midfielder-Forward, Key Forward, General Forward and Ruckman. 
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1.2 Match position classifications  

CD currently assigns players to positions on a season-by-season basis, rather than a match-by-match basis.  

This classification is based on a subjective assessment of a player’s statistics over the course of a season.  The 

key performance indicators for a player are linked to the position of a player.  Whilst all players on the ground 

are expected to contest for possession, defend and attack as required, there are distinctions in the statistical 

profile of players in different positions.  As a result, to make a meaningful assessment of a player’s 

contribution it is relevant to know the position of the player in that match (or group of matches).  For players 

who are used in the same position in each match this is not an issue, but for the increasing number of players 

who are required to play in different positions, performance assessment is problematic. 

 

1.3 Implications  

The AFL operates under the equalisation measures of salary caps and player drafts, which places greater 

importance on the recruitment of new and/or junior players into the competition.  The assessment of such 

players is also shaped by the position of a player, and as such this paper seeks to provide a method for 

segmenting players (across all competitions covered by CD) on a match-by-match basis into the seven CD 

positions. 

 

1.4 Multinomial logistic regression 

The allocation of players to positions is a statistical classification problem, with a nominal dependent variable 

for which there are more than two categories (i.e. the position outcomes).  Multinomial logistic regression is a 

classification method that is used to predict possible outcomes of such a categorically distributed dependent 

variable, with the independent or explanatory variables in this scenario being the match statistics collated for 

each player.  One of the benefits in using a multinomial logistic regression is that the model will provide 

probability estimates for each of the possible outcomes, rather than just a binary prediction.  In this case where 

each of the possible outcomes represents a different position, a probability estimate provides both an indication 

of certainty and a means for determining secondary hybrid positions. 

 

2. METHODS 

All of the match statistics collated by CD are segmented into the zone on the ground in which they occurred.  

The three different zones CD utilises for all competitions are: defensive 50 (metres from goal being defended), 

forward 50 (metres from goals being attacked) and midfield (the remainder of the ground).  This segmentation 

of match statistics by zone provides a starting point for identifying a player’s position during a match.  The 

ultimate position estimate for a player in this paper is a two-step approach.  Firstly, the multinomial logit 

model segments players into locations, and then a binary logit model classifies players by type (Key or 

General).  This two-step approach can be done either as a binary or multiplicative process. 

 

2.1 Model alignment with CD positional classifications 

CD engages staff at all AFL games to capture a variety of performance metrics, including the time spent by 

players in various locations throughout the game.  This results in a Time-In-Position report that segments a 

player’s time into four categories: Defence, Midfield, Forward and Ruck.  These categories are similar to the 

three ground zones, with the additional category of Ruck.  The Ruckman is a roaming role that is not defined 

by zone, and is the most easily distinguishable position.  The Ruckman contests for the ball following each 

stoppage in the game by attempting to hit/palm the ball to a team-mate in the manner of a ‘tip-off’ that 

commences a basketball game.  These actions are recorded as Hit-outs and are the key variable in categorising 

a player as a Ruckman.  The four categories from the Time-In-Position report have been used to represent the 

four possible outcomes (dependent variable) in the multinomial regression model.  These four primary 

positions can then be used as the basis for further segmentation into the seven CD positions (the Mid-Forward 

position can be derived from the regression model as a supplementary component – similar to CD’s current 

classification of players who have 40%, or more, of game time in each zone). 

The distinction between Key or General defenders/forwards is currently a subjective allocation.  The 

considerations for this classification include a player’s height and the balance of aerial and ground 

involvements i.e. a Key position player will generally be taller and have more marks/spoils compared to a 

General player.  For this paper the classification of players as a Key or General type player has been derived 

from a separate logit regression model, and then held as a constant across a season as there would often not be 

an explicit intent for a change in player type from match to match. 
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2.2 Variables and data included in the test models 

The 2015 AFL season was used as the test data for assigning match positions, but as the model is required to 

predict positions of players in second tier competitions, only the types of match statistics captured in these 

secondary competitions could be considered.  In addition to the statistics captured by CD, some basic derived 

variables were created that would be expected to have strong correlations with specific positions.  The three 

such variables that were eventually included in the ultimate models were: 

• Score impact to possessions: the ratio of shots at goal and score assists combined compared to possessions. 

• Ground level possessions: simply possessions less marks. 

• Mark rate: the number of marks relative to the number of possessions.  

The statistics included in the models (and the naming conventions) are detailed in Table 1 below. 
 

 

 
 

As the model developed is required to be used at 

second tier level - which includes junior players 

- the height variable was standardised to 

improve the efficacy in extrapolating the model 

to other competitions. 

 

 

Table 1: Match statistics used for player position assignment and notations 

 

2.3 Application of multinomial logistic regression 

The multinomial logit model is used to provide a prediction, or probability estimate, that a player was in each 

of the four positions.  The base outcome (in this model a Defender) is derived from equation (1), and the 

outcomes for all other positions is derived from equation (2). 
 

 (         )   
 

(  ∑   
   

  
   

)
     ( ) 

 

 (         )   
   

   

(  ∑   
   

  
   

)
     ( ) 

Where   
 is the set of match statistics for player  , 

   is a vector of regression coefficients (Table 3), 

  is each position in a set of  outcomes,  

  is the number of levels of the dependent variable 

where;     = 1, 2, 3, 4 and    = 4,  

   is the regression coefficients for position  .  

 

 

2.4 Logistic regression for player type 

The logistic model for classifying defenders/forwards as Key or General is similar to the multinomial logit 

model, but is a binary model and as such has one set of regression coefficients and just the one prediction.   

 (         )   
   

   

(     
   )

     ( ) 

For the purposes of this research, a Ruckman is also classified as being a Key position player, as there were a 

number of players who alternated between Ruck and Key Forward/Defender, but none who alternated between 

Ruck and General Forward/Defender.   

The functions of a Key Defender are different from those of a Key Forward¸ and as a result two different 

models are used for classifying a player as Key or General, with the main distinction being the logit model for 

a Key Defender references spoils.  

  

Statistic Abbrev

Tackle tack

Spoil spoil

Smother smoth

Bounce bounce

Mark: from opposition kick mk_fok

Mark: contested mk_con

Mark mk

Clearance clr

Hit-out hit

Possession poss

Shot at goal sag

Score impact relative to possessions score_poss

Marks relative to possessions mk_rate

Ground level possessions glvl

Player's height height

Description Notation

Tackle in the defensive 50 d_tack

Tackle in the midfield m_tack

Tackle in the forward 50 f_tack

Total tackles t_tack

Season average tackles s_tack
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3. RESULTS 

 

The correlations between 2015 AFL match statistics in each zone and the player positions as assessed by CD 

are shown in Table 2.  Not surprisingly the strongest correlations for a defender were with statistics captured in 

the defensive 50, and vice versa for 

a forward.  It was also evident that 

there was a positive correlation 

between a defender and some 

statistics from the midfield zone – 

Spoils and Marks from opposition 

kicks. 
 

In determining which match 

statistics to include in the model as 

independent variables, a 

combination of those statistics that 

had the strongest and significant 

correlations, as well as independent 

actions were trialled.  A number of 

the statistics that are captured are 

strongly correlated e.g. shots at goal 

and goals scored.  Selecting 

statistics conceptually and 

statistically independent helped to 

manage the potential issue of multi-

collinearity. 

*** p<0.01, ** p<0.05, * p<0.10 
 

Table 2: Correlations between zone match statistics and 2015 AFL player positions 
 

The coefficients for the 

multinomial logit model 

are shown in Table 3, with 

all of the variables being 

significant at the 1% level 

for at least one position, 

except for forward spoils 

(f_spoil) and total shots on 

goal (t_sag) which are 

both significant at the 5% 

level for the Forward 

position (Table 3). 
 

 

 

 

 

 

 

 

 

 

 

*** p<0.01, ** p<0.05, * p<0.10 
 

Table 3: Match position regressions 
 

The accuracy of the multinomial model in terms of using match by match data to correctly allocate players to 

their CD time in position location is shown in Table 4. A total of 9,060 player matches were assessed and 

83.91% of the positions with the highest probability align with CD’s time in position assessments.  The model 

Statistic

z_height 0.096 *** (0.286) *** (0.033) *** 0.457 ***

d_tack 0.262 *** 0.033 *** (0.273) *** (0.049) ***

d_spoil 0.519 *** (0.254) *** (0.274) *** 0.005

d_bounce 0.186 *** (0.061) *** (0.103) *** (0.049) ***

d_poss 0.567 *** (0.015) (0.493) *** (0.133) ***

m_mk_fok 0.358 *** (0.141) *** (0.233) *** 0.023 **

m_spoil 0.390 *** (0.263) *** (0.190) *** 0.118 ***

m_tack (0.301) *** 0.383 *** (0.104) *** 0.057 ***

m_glvl (0.233) *** 0.572 *** (0.299) *** (0.068) ***

f_tack (0.346) *** 0.074 *** 0.281 *** (0.011)

f_spoil (0.139) *** (0.082) *** 0.198 *** 0.051 ***

f_smoth (0.132) *** 0.020 * 0.119 *** (0.013)

f_poss (0.525) *** 0.050 *** 0.504 *** (0.052) ***

t_clr (0.386) *** 0.554 *** (0.213) *** 0.111 ***

t_hit (0.185) *** (0.142) *** (0.092) *** 0.873 ***

t_sag (0.413) *** (0.054) *** 0.498 *** (0.058) ***

score_poss (0.432) *** (0.143) *** 0.584 *** (0.013)

def mid fwd ruck

Coef. Coef. Coef.

z_height (0.070) 0.075 (0.247) 0.079 *** 1.639 0.307 ***

d_tack (0.397) 0.059 *** (0.700) 0.074 *** (0.788) 0.261 ***

d_spoil (0.981) 0.086 *** (1.078) 0.106 *** (1.047) 0.196 ***

d_bounce (0.393) 0.137 *** (0.062) 0.173 (3.513) 1.798 *

d_poss (0.239) 0.021 *** (0.567) 0.028 *** (0.558) 0.105 ***

m_mk_fok (0.630) 0.083 *** (0.897) 0.106 *** (0.578) 0.282 **

m_spoil (0.718) 0.065 *** (0.472) 0.069 *** (0.698) 0.132 ***

m_tack 0.258 0.036 *** 0.133 0.039 *** 0.253 0.090 ***

m_glvl 0.069 0.013 *** (0.079) 0.015 *** (0.046) 0.053

t_clr 0.678 0.047 *** 0.298 0.052 *** 0.782 0.113 ***

t_hit 0.390 0.062 *** 0.522 0.063 *** 0.766 0.067 ***

f_tack 0.740 0.104 *** 0.967 0.107 *** 0.662 0.204 ***

f_spoil 0.075 0.226 0.475 0.229 ** 0.447 0.351

f_smoth 1.043 0.301 *** 1.515 0.318 *** 1.146 0.657 *

f_poss 0.698 0.060 *** 0.991 0.063 *** 0.769 0.132 ***

t_sag 0.055 0.096 0.251 0.100 ** (0.359) 0.220

score_poss 1.996 0.895 ** 3.723 0.884 *** 3.598 1.640 **

_cons (0.781) 0.144 *** 0.746 0.146 *** (5.564) 0.700 ***

Postion →

Ind. Var. ↓

Mid Fwd Ruck

Std. Err. Std. Err. Std. Err.
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was able to accurately predict more than 

90% of games played by Defenders or 

Ruckman, but was not as accurate in 

predicting Midfielders (76%) and Forwards 

(82%).  This is partly due to the 

interchangeability between some 

midfielders and forwards that has been recognised by CD with its hybrid Mid-Forward position. 
 

Table 4: Multinomial model confusion matrix for 2015 AFL data 

 

The generalisability of the model has been tested on the 2014 AFL season.  Using the same logic of the 

maximum position estimate being the final position predicted, the model was able to accurately predict 

82.77% of positions, with similar results on 

a positional basis, i.e. Defenders and 

Ruckman were more accurately predicted.  

These results indicate that the predictive 

power of the model is transferrable to other 

AFL seasons. 
 

 

Table 5: Multinomial model confusion matrix for 2014 AFL data 

 

3.1 Player type 

A similar process for establishing whether a player was a Key or General type player was followed, with the 

first step being to assess the correlations between match (season) statistics and CD season player 

classifications for 2015.  As this research was holding a player’s type constant, the match statistics for players 

were averaged across a season (and each variable is prefixed with ‘s’). The correlations for the variables 

trialled in the models are included in Table 6, and as expected the 

correlation between s_spoil and Key Defender (0.71) is stronger than 

that for Key Forward (0.55).  The only variables that were included 

in the models were those that were conceptually relevant, avoided 

issues with multicollinearity (e.g. including two variables linked to 

spoils), and minimised model complexity.  The final binary logit 

model for classifying a Key Forward included a player’s height, 

season averages for possessions and contested marks, along with 

total marks relative to possessions.  The model for determining a 

Key Defender used all of the same variables with season average 

spoils also included. 

*** p<0.01, ** p<0.05, * p<0.10 
 

Table 6: Correlations between season statistics and player type 
 
 

The accuracy of the binary logit models for predicting whether a player was a Key or General type player are 

shown in Table 7.  For both models a player was deemed to be a Key player type if the probability estimate 

was greater than 0.5.  The model for Forwards was able to accurately predict 97.32% of the 224 forwards as 

either Key or General type players. The model for Defenders was able to accurately predict 91.89% of the 222 

players classified as a defender as either Key or General type players. 
 

  
 

Key (K) Gen (~K) Total

Key (+) 73 5 78

General (-) 1 145 146

Total 74 150 224

Sensitivity Pr ( + | K ) 98.65%

Specificity Pr ( - | ~K) 96.67%

Positive Predictive Value Pr ( K | + ) 93.59%

Negative Predictive Value Pr ( ~K | - ) 99.32%

Correctly classified 97.32%

2015

Prediction

Actual Forwards

Key (K) Gen (~K) Total

Key (+) 72 9 81

General (-) 9 132 141

Total 81 141 222

Sensitivity Pr ( + | K ) 88.89%

Specificity Pr ( - | ~K) 93.62%

Positive Predictive Value Pr ( K | + ) 88.89%

Negative Predictive Value Pr ( ~K | - ) 93.62%

Correctly classified 91.89%

2015

Prediction

Actual Defenders

Statistic

z_height 0.717 *** 0.806 ***

s_mark 0.115 *** 0.431 ***

s_poss (0.342) *** (0.201) ***

s_mk_con 0.365 *** 0.684 ***

s_spoil 0.709 *** 0.554 ***

s_mark_rate 0.437 *** 0.624 ***

s_spoil_rate 0.674 *** 0.476 ***

key_def key_fwd

Def Mid Fwd Ruck Total

True positives 91.52% 76.19% 82.43% 90.59% 83.91%

False positives 10.12% 21.05% 18.65% 10.35%

Actual position (per CD Time-In-Position)2015

Prediction

Def Mid Fwd Ruck Total

True positives 90.48% 76.30% 80.09% 89.69% 82.77%

False positives 11.07% 21.96% 20.22% 10.49%

2014

Prediction

Actual position (per CD Time-In-Position)
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Table 7: Logit model confusion matrix for 2015 AFL data for player type 

 

When the models were applied to the 2014 AFL season, the model for Forwards was able to accurately predict 

94% of the 238 forwards as either Key or General type players. The model for Defenders was able to 

accurately predict 91% of the 215 players classified as a defender as either Key or General type players. 

 

4. DISCUSSION 

As expected, the greater the number of events a player had in a game that were included in the model, the 

greater the accuracy in the prediction of that player’s position.  The final step in the development of the model 

is to incorporate prior information, as the prior position of a player is a good indicator of current position. A 

number of different methods have been provisionally trialled to incorporate such prior information (where 

available) into the prediction of current position.  These include incorporating lags into the multinomial logit 

model, which improved the model’s predictive ability but increased complexity, a Bayesian approach which at 

first run was too slow to identify positional changes, and using a Poisson distribution based on the number of 

match events to determine the weighting given to the current and prior match information. 

 

4.1 New positional classifications 

The probability estimates provided by the multinomial logit model offer scope for the creation of new position 

cohorts.  This includes additional secondary positions such as Ruckman-Forward and Defender-Mid.  The logit 

models for player type provide opportunity for creating a third player type Hybrid, that would recognise those 

players who are at the margins of being classified Key or General, and practically do play in either position. 

 

4.2 Research limitations 

Consideration was given to weighting match statistics to account for team strength – a player in a high scoring 

team will have more opportunities to have forward 50 involvements, and a player in a struggling team will 

have more opportunities to have involvements in the defensive 50.  However, the marginal improvement in the 

predictive ability of the models tested was thought to not outweigh the complexity and subjectivity that this 

method introduced.  Ideally match statistics would be standardised on a per minute basis, but this information 

is not available for secondary competitions, so could not be included in the model. 

 

5. CONCLUSION 

This paper provides a method for classifying Australian football players into positions on a match-by-match 

basis.  The multinomial logit model developed was able to accurately predict the position of a player in more 

than 80% of 9,060 player games, with similar results achieved when extrapolating the model to other AFL 

seasons.  The ability to segment every game for a player by position has the potential to improve player 

assessment at both AFL level, and critically second tier competitions where players are recruited into the AFL.  

The requirement of players to perform in multiple positions requires a performance analysis framework that 

can segment player games into multiple positions.  The model detailed in this paper provides the methodology 

for such a classification in Australian football. 
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MEASURING THE SIMILARITY BETWEEN PLAYERS  

IN AUSTRALIAN FOOTBALL 
Jackson, Karl 

a
  

a Champion Data – Melbourne, Australia: karl.jackson@championdata.com.au 

Abstract 
 

This paper introduces a measure of similarity between players in the Australian Football League (AFL). For 

each player, their signature is defined using a 175-dimension vector that represents a breakdown of a player’s 

involvements during games. Each dimension is a unique combination of event type (43 classifications), event 

zone (three classifications) and game state (three classifications). The magnitude of each dimension is defined 

as the percentage of a player’s total involvements that were observed for that particular combination of event, 

zone and state. The similarity between two players is then taken as a linear transformation of the vector angle 

between players. The two most-similar players during the 2015 AFL season were found to be key forwards 

Josh J. Kennedy (West Coast Eagles) and Jeremy Cameron (GWS Giants). This similarity measure will also be 

used to graphically represent a squad’s playing list, to identify unique players, and to match players from other 

leagues (such as new draftees, and women’s football) to their AFL equivalents. 

Keywords: Similarity, Australian Football, Classification 
 

1. INTRODUCTION 

Australian Football is competed at the highest level in the Australian Football League (AFL). As of the 2016 

season, this league is contested by 18 clubs spread over five of Australia’s eight states and territories. Each of 

Western Australia, South Australia, New South Wales and Queensland are represented with two teams, with 

10 being based in Victoria, nine of those in Melbourne. Each club has a playing roster of roughly 45 players, 

with 22 to be selected to compete in each game – 18 starting on the field and four as interchange players. 

Clubs can then use up to 90 player rotations within games to interchange players. There are no restrictions on 

positions once on the field and players are often expected to perform in multiple roles not only across the 

course of a season, but also within games.  

AFL clubs can add players to their roster between seasons by either trading players and/or draft picks 

with other AFL teams, signing free agents from other AFL teams or selecting new players via an end-of-

season draft. Table 1 gives a summary of the new players selected via the draft for the 2016 AFL season. The 

vast majority came from state league competitions (80%) while the remainder were a mixture between lower-

grade competitions and players recruited from other sports such as basketball and Gaelic football. 

 

Competition State 
2015  

Players 

Players  

Drafted 
Draft % 

% of New  

Players 

TAC Cup Victoria 773 45 5.8% 39% 

SANFL South Australia 1045 16 1.5% 14% 

WAFL Western Australia 1149 13 1.1% 11% 

NEAFL QLD, NSW, ACT, NT 492 9 1.8% 7.8% 

VFL Victoria 755 8 1.1% 7.0% 

Other  N/A 24 N/A 21% 

Total  (Excluding “Other”) 4077 91 2.2% 79% 

Table 1: Source leagues for new 2016 AFL players. 

 

Club recruiters spend their time throughout the season narrowing a potential list of thousands of players 

to a draft board of the order of 100 players from which they will select 6-10 to recruit. This process involves a 

large amount of time-consuming manual work, including identifying strengths and weaknesses of players. 

Significant time could be saved with an accurate indicator of a player’s playing style, which we will attempt to 

address in this paper through the derivation of ‘similar players’.  

There have been several previous attempts to cluster players into predefined positions, such as 

Sargent & Bedford (2010) who used 13 event types to place players into four categories – defenders, 

midfielders, forwards and ruckmen – and Pyne et al (2006) who used fitness testing and physical 

characteristics to predict a player’s future position at AFL level. Though Sargent & Bedford (2010) did 

introduce a concept of dissimilarity between players, this concept of having a continuous representation of 

player roles has not been rigorously developed in team sports. 
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Champion Data maintains position labels for players, but these are restricted to seven categories: 

 Key Defender 

 General Defender 

 Ruckman 

 Midfielder 

 Mid-Forward 

 General Forward 

 Key Forward 

These positions can essentially be reduced to identifying which end of the ground a player spends the majority 

of their time (forward, midfield or defence) and their height (key or general, rucks). Introducing a more 

granular representation of a player’s style with more position types should enable better, and faster, 

identification of player strengths and weaknesses, since recruiters would be prompted to a player’s style before 

seeing that player play a game. Identifying players similar to a particular player would also enable smarter 

roster-management decisions by AFL clubs, where they can avoid having players with two closely-related skill 

sets on the same team, or find targets to potentially replace an outgoing player. Members of the general public, 

through coverage in the media, could also better identify with young players if they are identified as similar to 

a more senior player with a similar playing style.  

 

2. METHODS 

A player’s involvement in games was measured as a combination of event type (how the player was involved), 

the current state of the game, and the location of the event. 

Champion Data records more than 100 event types for AFL games. For this paper 43 of these events will 

be used as a representation of a player’s involvement in games. Events that were excluded include those that 

happen irregularly, such as dropped marks, and events that are only recorded at AFL level and not at lower 

levels, like ruck contests. Many event types also take into account the state of the game – whether a player’s 

teammate was in control of the ball, the opposition was in control or the ball was in dispute. These 

classifications were removed to further reduce the number of events recorded.  

Though the game state was removed from the event type, it was reintroduced with slightly altered logic 

as a second variable. Game state was defined as: 

1. Interception  Winning the ball off the opposition; 

2. Stoppage  Involvements at stoppages before either team has cleared the area; 

3. General Play All other involvements. 

In this manner, a player taking a mark off an opposition kick is treated differently to a mark from a teammate’s 

kick. Likewise, a tackle in general play is treated differently to tackles at stoppages. The zone of events was 

also used, with three possible options: 

1. Defensive 50 

2. Midfield 

3. Forward 50 

As an example of how a player’s involvement is then represented by the above variables, we consider 

Fremantle’s Nat Fyfe from 2015. His most common involvement was via a handball receive in the midfield in 

general play, followed by a gather from hitout in the midfield at stoppage. Table 2 contains his five most-

common involvements in games, of the 175 observed combinations across all players in 2015.  

 

Event Type Zone Game State Count % Total 

Handball Receive Midfield General Play 113 8.2% 

Gather from Hitout Midfield Stoppage 93 6.8% 

Inside 50 Midfield General Play 87 6.4% 

Centre Bounce Clearance Midfield Stoppage 70 5.1% 

Hard Ball Get Midfield Stoppage 54 3.9% 

Throw In Clearance Midfield Stoppage 50 3.6% 

Tackle Midfield Stoppage 43 3.1% 

Ineffective Kick Midfield Stoppage 43 3.1% 

Table 2: Nat Fyfe’s most-common involvements in 2015. 

 

All of a player’s involvements are represented as a 175-dimension vector, w . Each element of w
corresponds to a unique combination of event type, zone and game state, and its magnitude is the percentage of 
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Player Club Average Rank Peers Efficiency Rank 

Dayne Zorko Brisbane Lions 13.1 42 7.4 +77% 1 

Steven May Gold Coast Suns 11.6 96 7.6 +53% 5 

Tom Lynch Adelaide Crows 11.8 82 7.9 +50% 6 

Alex Rance Richmond 13.8 25 8.0 +71% 2 

Mark Baguley Essendon 8.6 254 6.3 +37% 21 

Corey Enright Geelong Cats 10.7 134 7.4 +44% 13 

Travis Varcoe Collingwood 9.6 189 6.9 +40% 19 

Tom Scully GWS Giants 10.1 164 7.2 +41% 17 

Cale Hooker Essendon 10.4 151 7.3 +42% 16 

Devon Smith GWS Giants 11.9 81 8.0 +48% 9 

Table 8: Top-10 players for competition rank for efficiency relative to raw points. 

 

NETWORK PLOTS 

Plotting all of a club’s players using a network plot allows us to visualise the make-up of the club’s roster. 

Figure 1 below shows such a plot for the Western Bulldogs of 2015, though only the players who had 10 or 

more appearances for the season. Each player is linked to his three most-similar teammates. From the below 

plot we can quickly identify some hybrid players – those who play across multiple positions or fulfil multiple 

roles within games.  

 Easton Wood acts as a link between the shutdown defenders (Hamling, Talia, Morris and Roberts) 

and the more attacking defenders (Boyd, Johannisen, Murphy and Biggs). 

 Stewart Crameri acts as a link between the permanent forwards (Stringer, Dickson, Boyd and 

Redpath) and the mid-forwards who rotate between the forward-line and the midfield (Grant, Dale, 

Hunter, Daniela and Hrovat). 

Note that with four players filling the ruck role throughout the year for the Western Bulldogs, they form an 

isolated network unconnected to other position types. 

 

 
Figure 1: Network plot for the 2015 Western Bulldogs. 
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In Figure 2 the same representation is shown for Hawthorn. It is clear that at either end of the network 

there is a distinct grouping of permanent forwards (Gunston, Roughead, Breust, Schoenmakers, Rioli and 

Puopolo) and permanent defenders (Frawley, Litherland, Stratton, Gibson and Lake). The two permanent 

ruckmen used (Ceglar and McEvoy) sit between the club’s midfielders and David Hale, who was 

predominantly a forward, but spent short periods in the ruck. 

 

 
Figure 2: Network plot for the 2015 Western Bulldogs. 

 

 

4. CONCLUSION 

It was shown that using vector angles on a breakdown of player involvements produces a viable measure of 

player similarity. Comparisons across competitions can be used to preview the careers of new players or to 

gain greater context on the performance of unknown players. Further research is suggested in clustering 

players into discrete position classes to better enable comparison of player performance. 
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Abstract 

Two major talking points amongst both team sports fans and personnel are a) season difficulty and b) relative 
team performance. Although heavily debated in a variety of forums, it is important that these constructs be 
quantified in an effort to understand fully the factors which influence fixture difficulty and performance and 
allow coaches and training staff to make informed training and in-game decisions. Hence, we present 
methodologies for the quantification of both season difficulty and relative team performance based on data that 
is entirely available prior to the start of each match. Data was obtained for all matches played during the 2010 – 
2015 AFL premiership seasons, and contained information pertaining to the season, round, teams, venue, scores, 
and team ranks for each match with additional measures of form (head to head and individual past performance 
ratios) being calculated from the raw data. A multivariate logistic regression (MLR) model for predicting the 
probability of a win for a team was developed that during validation achieved an accuracy of 67.8%. Based on 
this MLR model, we present a framework for the quantification of season difficulty and the evaluation of a 
team’s performance throughout a given season. These models make use of rank differentials, Bernoulli 
simulation, and a newly proposed risk matrix for point assignment respectively. When viewed against an 
objective analysis of actual team performance these models perform comparatively well and as such can be used 
to make informed training decisions. 

Keywords: AFL, Fixture Difficulty, Multivariate Logistic Regression, Performance Analysis 

1. INTRODUCTION
Although debated across many forums, both the concepts of season difficulty and relative team performance
within the Australian Football League (AFL) have yet to be quantified by mathematical means. The literature to
date has focussed on match outcome prediction (Maszczyk et al. 2014), optimal betting strategies (Crowder et
al. 2002), or rudimentary analysis of key performance indicators (Jones, Mellalieu and James 2004) in sports
other than AFL. Currently only simple approximations for season and match difficulty are used within the
literature, for instance differentials of ELO style ratings (Hvattum and Arntzen 2010) and simplistic probability
based models such as Bradley-Terry type models (McHale and Morton 2011).

The aims of this research were twofold; firstly, to objectively evaluate the difficulty of a given season using 
mathematical means, and secondly, to develop a method by which it is possible to quantify team performance 
over a given season. To achieve this, we present a novel methodology for quantifying season difficulty and team 
performance. Guided by practical knowledge and current literature, we utilise various models based on 
multivariate logistic regression which make use of rank differentials, Bernoulli simulation, and a new risk matrix 
for the awarding of points. 

2. METHODS
DATA
Data for this study was acquired from afltables.com (2015) and consisted of full match data for all games played
during the 2010-2015 AFL premiership seasons (1210 matches), more specifically data pertaining to; season,
round, home team, away team, home rank, away rank, home score, and away score were utilised. An initial
screening of the data revealed that 12 of the matches concluded with a draw and as such were removed due to
their infrequent occurrence (0.9917%).

For each retained match both home and away teams were reassigned using a robust methodology which 
aims to provide an unbiased definition of the home/away assignments for each match. The rationale behind this 
was to remove bias introduced by inter-club politics and take into account stadium conditions (location and 
crowd composition) which have been shown to directly affect player performance (Reicher 2001). For any 
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pairing of teams (𝑖𝑖, 𝑗𝑗) ∈ (𝐻𝐻,𝐴𝐴) in a match 𝑚𝑚 the home and away teams are defined as follows; if either team 𝑖𝑖 
or 𝑗𝑗 are playing at their home ground then assign the home team accordingly, however, if both teams 𝑖𝑖 and 𝑗𝑗 
share the same home ground or are both playing an away game then assign the home team to that team which 
has the highest official membership number. This reassignment yields a home team win percentage of 0.581 
which holds with the paradigm of home advantage outlined by Stefani and Clarke (1992) and Clarke (2005) as 
well as remaining statistically similar to the original data which has a home team win percentage of 0.584 
(∆<0.005). 

TEAM BASED STATISTICS CALCULATION 
In addition to the data above, various other metrics with respect to team performance and form were calculated. 
For a given match 𝑚𝑚 between home and away teams 𝑖𝑖 and 𝑗𝑗, the result 𝑅𝑅𝑖𝑖,𝑗𝑗,𝑚𝑚 = 1 if team 𝑖𝑖 wins and 𝑅𝑅𝑖𝑖,𝑗𝑗,𝑚𝑚 = 0 
if team 𝑖𝑖 loses. Furthermore, let 𝑅𝑅𝑖𝑖,𝑗𝑗,𝑚𝑚 = 0 if the mth match was not between teams 𝑖𝑖 and 𝑗𝑗. Therefore, for a set 
of matches played between a home team 𝐻𝐻 and an away team 𝐴𝐴, team based statistics were calculated as follows; 

• Head2Head: The percentage of games over the past 5 games for which the home team has won against
the away team.

∑ �𝑅𝑅𝐻𝐻,𝐴𝐴,𝑔𝑔�𝑚𝑚−1
𝑔𝑔=𝑚𝑚−6

5
(1) 

• PastHome: The percentage of games over the past 4 games for which the home team has won against
any opponent.

∑ ∑ �𝑅𝑅𝐻𝐻,𝑗𝑗,𝑔𝑔�𝑚𝑚−1
𝑔𝑔=𝑚𝑚−5

4
𝑗𝑗=1

4
(2) 

• PastAway: The percentage of games over the past 4 games for which the away team has won against
any opponent.

∑ ∑ �𝑅𝑅𝐴𝐴,𝑖𝑖,𝑔𝑔�𝑚𝑚−1
𝑔𝑔=𝑚𝑚−5

4
𝑖𝑖=1

4
(3) 

PREDICTIVE ALGORITHM 
Throughout this study both result and win probability prediction were performed using multivariate logistic 
regression (MLR) and made use of the features 𝐹𝐹 described above. MLR is a generalised linear model that has 
been successfully used for ex-ante prediction (Lopez and Matthews 2014) and in our application achieves an 
accuracy of 67.8%. Let 𝐶𝐶(𝐹𝐹) and ℂ(𝐹𝐹) represent predictions of match result and win probability (with respect 
to the home team) respectively, with the MLR model being specified as 

ln �
ℂ(𝐹𝐹)

1− ℂ(𝐹𝐹)
� = 𝛽𝛽𝛽𝛽 (4) 

where 𝛽𝛽 are the unknown coefficients to be estimated, 𝐶𝐶(𝐹𝐹) is derived from a logistic regression fit function 
which classifies a win as follows: 

𝑅𝑅𝐻𝐻,𝐴𝐴,𝑚𝑚 = �1  ℂ(𝐹𝐹) ≥ 𝑐𝑐
0  𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

(5) 

where 𝑐𝑐 is the cut-off point for the logistic regression fit function which is taken as the intersection of both 
sensitivity Pr(𝑌𝑌𝚤𝚤� = 1 |𝑌𝑌𝑖𝑖 = 1) and specificity Pr(𝑌𝑌𝚤𝚤� = 0 |𝑌𝑌𝑖𝑖 = 0), and ℂ(𝐹𝐹) is taken as the direct output of the 
MLR. 

SEASON DIFFICULTY 
The difficulty 𝐷𝐷𝕋𝕋,ℛ of a season for a given team 𝕋𝕋 starting the season at rank ℛ can be defined using one of two 
models; the previous season ranking model (PSR) which is a simple linear style model, and the season ranking 
simulation (SRS) model which is a model predicated on the basis of our MLR model. 

Model 1: PSR 
The difficulty 𝐷𝐷𝕋𝕋,ℛ derived from the PSR model is defined as the sum of the differences in ranking between 

the reference team and their opponents during their 11 home and 11 away games (ℎ𝑔𝑔 and 𝑎𝑎𝑎𝑎 respectively) during 
a given season. 

𝐷𝐷𝕋𝕋,ℛ = ��ℛ𝕋𝕋,ℎ𝑔𝑔 − ℛ𝐴𝐴,ℎ𝑔𝑔� + ��ℛ𝕋𝕋,𝑎𝑎𝑎𝑎 − ℛ𝐻𝐻,𝑎𝑎𝑎𝑎�
11

𝑎𝑎𝑎𝑎=1

11

ℎ𝑔𝑔=1

(6)
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Scores are then approximated as standardised random variables as per (7) by setting both mean and standard 
deviation as the arithmetic mean and range of 𝔸𝔸𝕋𝕋,ℛ and 𝔹𝔹𝕋𝕋,ℛ respectively, where 𝔸𝔸𝕋𝕋,ℛ and 𝔹𝔹𝕋𝕋,ℛ are the minimum 
and maximum possible difficulty ratings for a given team and starting rank (as outlined by the AFL Commission) 
respectively, with values less than 0 indicating an easier than average season and vice versa. 

𝐷𝐷𝕋𝕋,ℛ
∗ =

𝐷𝐷𝕋𝕋,ℛ − 𝜇𝜇𝕋𝕋,ℛ

𝜎𝜎𝕋𝕋,ℛ
,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝜇𝜇𝕋𝕋,ℛ =

𝔸𝔸𝕋𝕋,ℛ − 𝔹𝔹𝕋𝕋,ℛ

2  𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎𝕋𝕋,ℛ = 𝔹𝔹𝕋𝕋,ℛ − 𝔸𝔸𝕋𝕋,ℛ (7) 

The AFL Commission (Australian Football League 2015) have outlined the following guidelines for the 
setting of fixtures (accurate as of the 2015 AFL season); each team is to play 22 games over a period of 25 weeks 
with each team playing each other team at least once. Teams ranked 1-6 at the beginning of the season will then 
play either 2 or 3 additional games against other teams ranked 1-6, either 1 or 2 additional games against teams 
ranked 7 to 12, or either 0 or 1 additional games against teams ranked 13-18. Teams ranked 7-12 at the beginning 
of the season will then play either 1 or 2 additional games against teams ranked 1-6, either 2 or 3 additional 
games against other teams ranked 7 to 12, or either 1 or 2 additional games against teams ranked 13-18. Teams 
ranked 13-18 at the beginning of the season will then play either 0 or 1 additional games against teams ranked 
1-6, either 1 or 2 additional games against teams ranked 7 to 12, or either 2 or 3 additional games against other
teams ranked 13-18. From the above guidelines it is possible to generate a list of maximum (𝔹𝔹𝕋𝕋,ℛ) and minimum 
(𝔸𝔸𝕋𝕋,ℛ) difficulty rating values for each team given their starting rank and number of scheduled games 𝐺𝐺𝕋𝕋,𝑗𝑗

𝑚𝑚𝑚𝑚𝑚𝑚 and
𝐺𝐺𝕋𝕋,𝑗𝑗
𝑚𝑚𝑚𝑚𝑚𝑚 against team 𝑗𝑗, where 𝐺𝐺𝕋𝕋,𝑗𝑗

𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐺𝐺𝕋𝕋,𝑗𝑗
𝑚𝑚𝑚𝑚𝑚𝑚 are the easiest and hardest sets of scheduled games respectively.

𝔸𝔸𝕋𝕋,ℛ = 22ℛ𝕋𝕋 −�ℛ𝑗𝑗

18

𝑗𝑗=1
𝑗𝑗≠𝕋𝕋

𝐺𝐺𝕋𝕋,𝑗𝑗
𝑚𝑚𝑚𝑚𝑚𝑚 (8) 

𝔹𝔹𝕋𝕋,ℛ = 22ℛ𝕋𝕋 −�ℛ𝑗𝑗

18

𝑗𝑗=1
𝑗𝑗≠𝕋𝕋

𝐺𝐺𝕋𝕋,𝑗𝑗
𝑚𝑚𝑚𝑚𝑚𝑚 (9) 

Model 2: SRS 
The SRS model is a hybrid simulation model combining aspects of result prediction, Bernoulli simulation, 

and linear modelling. Using this model the difficulty 𝐷𝐷𝕋𝕋,ℛ is derived as the difference between a team’s rankings 
ℛ𝕋𝕋,𝑦𝑦 at the end of the current and previous seasons 

𝐷𝐷𝕋𝕋,ℛ = ℛ𝕋𝕋,𝑦𝑦 − ℛ𝕋𝕋,𝑦𝑦−1 (10) 
where a team’s ranking at the end of the current season is obtained by simulating the season’s fixture for possible 
match points based on the MLR model. 

In this simulation as per a normal AFL season, a team is awarded 4 points for each win with the total number 
of points being averaged over all simulations and end of season rankings ℛ𝕋𝕋,𝑦𝑦 assigned accordingly. Differences 
are then calculated as per (10) with a negative difference indicating an easier season and vice versa. 

TEAM PERFORMANCE 
The current performance ℙ𝕋𝕋,𝑦𝑦 for a team 𝕋𝕋 during season 𝑦𝑦 is defined by the static penalty (SP) model as 

ℙ𝕋𝕋,𝑦𝑦 = �𝒫𝒫𝕋𝕋,𝑚𝑚,𝑦𝑦

22

𝑚𝑚=1

(11) 

where  𝒫𝒫𝕋𝕋,𝑚𝑚,𝑦𝑦 is the point value awarded to team 𝕋𝕋 after match 𝑚𝑚 during season 𝑦𝑦. For a given win probability 
ℂ(𝐹𝐹) corresponding to a reference team 𝕋𝕋 a simple method for quantifying match performance is defined as 

𝒫𝒫𝕋𝕋,𝑚𝑚,𝑦𝑦 =

⎩
⎨

⎧min�25,
1

ℂ(𝐹𝐹)�   𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝕋𝕋 > 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝐴𝐴

max�−25,−
1

1− ℂ(𝐹𝐹)�   𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒
(12) 

with larger values indicating better team performance. 

3. RESULTS
In summary the MLR model used throughout this research achieved a validated accuracy of 67.8%, has a residual 
deviance of 749.6 with 693 degrees of freedom, χ2=638.09, and a p-value=0.06712 which at a 5% level of
significance would indicate no evidence of a lack of fit. However, as the model is not saturated a more
appropriate test would be the Hosmer-Lemeshow test (Hosmer Jr and Lemeshow 2004) which has χ2=5.48, and
a p-value=0.7 which at a 5% level of significance indicates a significantly good fit.
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A cursory look at the win probabilities generated by the MLR model (Figure 1) would indicate that teams 
such as St Kilda and Melbourne have the hardest season and teams such as Geelong and Sydney have the easiest 
season. However, as is the nature of a competitive game such as AFL the team with the easiest season does not 
necessarily perform the best. 

Figure 1: Per Match Win Probabilities for the 2015 AFL Season 

SEASON DIFFICULTY 
Figure 2 presents the season difficulty (PSR and SRS respectively) for each team during the 2015 AFL 
premiership season, contrary to our cursory analysis the PRS model predicts St Kilda and Geelong to have the 
easiest and hardest season respectively. However, after a closer look we can see that the difficulty ratings for St 
Kilda and Geelong are clearly outliers and can be attributed to the simplistic nature of the model. Another 
observation that can be made is that the remaining 16 teams have a difficulty rating between -0.3 and 0.3 and as 
such can be said to have a relatively fair season. 

Using the results generated from the SRS model we can see that most of the results lie within the range of  
-2 to 2 and can therefore be concluded that the season is relatively easy for all teams other than Gold Coast,
Sydney, and North Melbourne. Gold Coast and Sydney having only a marginally more difficult season with
difficulty scores of 3 and North Melbourne having a significantly more difficult season with a difficulty score
of 5.

The variance in results amongst the two models can be seen as either a result of the increasing complexity 
of each model or the inherent differences in each model’s design. The PSR model is based on standardized rank 
differentials and as such aims to negate the unbalanced structure of the AFL season, whereas the SRS model 
aims to simulate the outcome of the AFL season. Surprisingly though, the PSR model in its simplicity shares 
similar characteristics with the preseason model employed by Champion Data which makes use of points 
differentials from the 2014 season which provided teams maintain a relatively stable level of performance can 
be seen as a proxy for the final rankings of the 2014 season which are employed by the PSR model. 

The SRS model similarly predicts a reasonably easy season for most of the teams, however, it singles out 
Gold Coast, North Melbourne, and Sydney as having the hardest season whereas the Champion Data model rates 
their seasons as moderately difficult. This is more than likely a compounding effect realized through the 
simulation of an already biased fixture. 
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(a) PSR Difficulty (b) SRS Difficulty
Figure 2: Season Difficulty Results (Difficulties within horizontal 

boundaries represent relatively easy fixtures) 
TEAM PERFORMANCE 
Figure 2 presents the results from the SP model. Once again Geelong has appeared at the bottom of our list and 
St Kilda towards to top, and so it could be concluded that the previous season ranking model and the variable 
penalty difficulty model complement each other in their simplicity. We can also conclude that there are three 
performance clusters; with Gold Coast, Essendon, and Geelong performing the worst, Adelaide, Brisbane Lions, 
Carlton, and Collingwood performing adequately, and the other teams performing very well. 

Figure 3: Static Penalty Model Performance Plot 
4. DISCUSSION
The aim of this study was to determine whether it is possible to mathematically quantify both season difficulty
and team performance. With respect to the MLR model’s accuracy, it achieves similar results to those in the
literature. Baker and McHale achieved accuracies of 63.6 and 66.9% respectively using a continuous-time
Markov process to predict the outcomes of National Football League (NFL) games, Akhtar and Scarf (2012)
achieved a 59.6% accuracy for predicting the ex-ante outcomes of cricket matches when using a MLR model,
and Carbone, Corke, and Moisiadis (2016) achieved accuracies of 63 and 55.7% respectively using an ELO
based method for predicting National Rugby League (NRL) match outcomes. Our results compare favourably
to those in the literature. However, it would be possible to use other features which are not routinely available
prior to the beginning of the season (number of best players available, injuries, etc.) to increase model efficacy.

Whilst the predictive accuracy of our model compares similarly to those in the literature – all of these models 
assume independence between matches. However, it can be safe to say that match results are subject to some 
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form of dependence. Nevertheless, violation of the independence assumption does not significantly impact the 
final results due to the scale of our data (Heo and Leon 2005). 

The season difficulty models were initially designed with model simplicity in mind (PSR) and then 
graduated to a more complex simulation model (SRS), the rationale behind the PSR model is that it provides a 
model based on the most simplistic (and in this case most telling) metric of opponent difficulty (previous season 
ranking), while the SRS model attempts to simulate the outcome of a given season and then draw inferences 
with respect to relative fixture difficulty. 

The team performance model (SP) was designed using a truncated risk matrix such that the points assigned 
to a team who wins a very easy match (Pr(Win)>0.7) are significantly smaller in magnitude than points assigned 
to a team who wins a very hard match (Pr(Win)<0.3) with the inverse true for a team who loses a match. The 
rationale behind this design is that it is believed to be able to more accurately capture the real world implications 
of winning and losing matches of varying difficulty. The significantly larger negative results from the SP model 
are due to the heavy weighting assigned for winning and losing hard and easy games respectively. The 
coefficients and parameters of the risk matrix can also be altered in accordance to the MLR model and coaching 
decisions. Hence, the methodology presented in this paper can be utilised for other competitive team sports. 

5. CONCLUSIONS
An important characteristic to be aware of when creating models for the AFL is that unlike a majority of
European sports the AFL has an inherently biased fixture structure which is dictated by inter-club politics. With
this in mind it is more than feasible to suggest that teams and coaches not only be judged by their wins and losses
in a given season but also by their performance relative to the difficulty of their respective fixtures. Our model
may also be repurposed for use in an applied sense. Firstly, future model features relating to relative team
performance could be derived and may consist of data such as a team’s performance over or under a given
fixtures difficulty, and secondly, our results may be used to assist with fixture planning and fairness evaluation
by the AFL.
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Abstract 
 

In Australian Rules Football, play is started each quarter, and after each goal, by the umpire bouncing the ball 

in the centre of the ground to be contested by two ruckmen while several shorter players rove the vicinity. 

There are about 28 of these events each match, and it is common wisdom that winning clear possession here is 

a Key Performance Indicator. When a team wins the ball from this restart, it immediately enters its attacking 

zone 70% of the time, and scores directly from 21% of its clearances without an opponent touching the ball. 

Whilst evaluating Hawthorn Football Club’s successful 2014 season, I discovered three remarkable disruptions 

to this common sense interpretation: 

1. Despite full-time stoppage coaches and massive investment in strategies, the win-loss ratio of clubs in 

an entire season’s data was essentially a coin flip. Only one club won centre clearances at a rate 

outside ±1.5 standard errors in the mean compared with a Bernoulli trial model, and the standard 

deviation of the 18 clubs’ SEMs was 1.06. 

2. The centre clearance statistic had zero reliability; in fact teams were slightly more likely to get a 

negative differential in the match following a positive one. 

3. Over the season, there was a strong negative correlation (r = −0.68) between clubs’ clearance win rate 

and the conversion of those opportunities into scoreboard equity (O’Shaughnessy, 2006). This 

suggests teams that invest extra resources in winning the “coin-flip” have depleted resources at more 

vital locations. 

Hawthorn FC embarked on a gedankenexperiment where the coaches were asked to consider how they would 

structure their resources if, instead of competing to win the clearance, the umpire simply flipped a coin and 

gave the ball to the winner. 

This paper explores the implications of classifying some events as mostly luck – a spontaneous breaking of 

symmetry – and how a sports team or player might measure performance accounting for known sources of 

variation. 
 

Keywords: Luck, performance analysis, Australian Rules Football, AFL 
 

1. INTRODUCTION 

As the field of performance analysis matures, identification of key performance indicators in sporting contests 

has expanded. While some new metrics – such as Expected Goals in soccer – are explicitly attempting to 

reduce random variation, coaches and analysts have often been reluctant to re-evaluate the meaning of 

traditional KPIs that have always been part of their reporting and coaching methods. 

In reality, all actions that are counted on the field of play are affected to some extent by stochastic 

processes, from the bounce of the ball to the workings of the neuromuscular system (Mauboussin, 2012) to the 

intervention of officials. The state of play prior to each action provides significant context to the action’s 

outcome, but is itself affected by both systematic and random factors. 

Additionally, statistical models that attempt to predict team success based on combinations of these KPIs 

are affected by several confounding factors including 

 Small sample sizes of perhaps a couple of dozen games per year 

 Opposition effects: each contest is a dynamic exchange (e.g., Gréhaigne & Godbout, 2014) 

where the opponent has as much effect on the collection of outcomes as the team. This is unlike 

most other fields of statistical analysis 

 Multi-collinearity and interconnectedness between indicators 

 We would to identify those actions which are indicative of skill, and those we can classify as luck. 

Naturally this is a continuum and the proportion of luck in a mixed indicator tends to decrease with the square-

root of the number of data points. We would also like to measure the effect of these on the scoreboard. This 

paper offers some insights into the process in one sport. 
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2. METHODS 

THE CENTRE CLEARANCE 

One distinctive aspect of Australian Rules Football 

(colloquially called AFL) is the amount of umpire intervention. 

There are three field umpires, two boundary umpires, two goal 

umpires, video reviewers, supervisors and assistants. This 

befits the somewhat anarchic play with 36 players on the field, 

no offside rule, full contact, and dozens of player substitutions 

each quarter. At the beginning of each quarter, and after each 

goal, an umpire takes possession of the ball in the centre of the 

oval and either bounces it or throws it into the air
1
. This is 

called the Centre Bounce, one of three types of stoppage where 

the umpire impels the ball back into play. 
At the Centre Bounce, only one designated ruckman from 

each team is able to contest the ball in the air. The ruckman 

who hits the ball (gaining a hitout statistic) attempts to direct it 

to one of his rovers. Three rovers from each team are allowed 

within the area, and other players arrive from 25m away within 

five seconds of the bounce. The rover with first possession 

either attempts to clear the ball from the congested area himself 

with a handball or kick, or passes to a teammate who seeks to 

achieve this. The first player who effectively passes the ball to 

a teammate in sufficient space, or successfully clears the centre 

area without disadvantaging his team, is awarded a centre 

clearance or centre break. If neither team can release the ball 

due to the carrier being tackled, the umpire directs a secondary 

stoppage or ball-up. 

Figure 1 is a Sankey diagram showing the average flow of 

ball possession from the Centre Bounce. Where numbers do not 

sum to 100%, there is leakage due to the play ending without 

clearance. There are numerous opportunities for individual skill 

and team strategy to influence the play, from the jump and tap 

of the ruckman to subtly blocking opponents, commanding 

space, sharking the ball from the opposition ruck, stealing it at 

ground level or gaining a free kick. While the best ruckmen can 

achieve hitout rates of over 65% long-term, hitouts to 

advantage where a teammate has immediate space to make a 

decision are rarer – about 28% of all CB hitouts are classified 

this way (not shown in Figure 1, but comprising 56% of the 

50% Gathered). 

Teams invest considerable resources into stoppages, with 

professional teams often employing a full-time stoppage coach, 

engaging ruck consultants and developing playbooks of 

formations and strategies intended to give the team a significant 

advantage from these neutral restarts. 

For the Centre Clearance analysis in the next section, this 

paper will consider only those 86% of Centre Bounces that 

assigned a clearance to a team. Notations from every 2014 

match were used (n = 4915 from 207 matches). 70% of 

possession chains from clearances are taken into the attacking zone within 50m of goal without an opponent 

touching the ball, and of those 30% lead directly to a score. 

 

                                                
1 The ball is thrown up when conditions are unfavourable for bouncing, or if the umpire has failed to bounce the ball 

satisfactorily; these differences are not discussed in this paper 

Secondary 

Stoppage

Hitout
Opponent 

Hitout

43% 43%

14%

First 

Possession

50% Gathered 40% Sharked

Clearance

81% Cleared

Oppo First 

Possession

14% Pilfered

Inside F50 

Zone

70% Attack

30% Direct

Score

Figure 1: Anatomy of a Centre Clearance
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SCOREBOARD EQUITY 

O’Shaughnessy (2006) uses the term scoreboard equity to describe the net value of the current state of the ball, 

with respect to a team’s chances of scoring next. Given sufficient time, the Markov process that describes ball 

movement will be absorbed as a score, worth either +6, +1, -1, or -6 to the team. Scoreboard equity is the 

expected mean value of the ensemble of absorbing states, weighted by the probability of that score occurring 

next. Each AFL play can be regarded as a mini-game where teams attempt to optimise equity, in order to 

maximise their probability of winning the match through realised scores. 

Simple data analysis shows that the average equity of a centre clearance in recent years has been +1.06; if 

the opponent clears the ball the team has equity -1.06. This implies a swing of 2.12 scoreboard points 

depending on which team wins use of the ball from the centre bounce.  

For this paper, the scoreboard equity has been evaluated at known standard states, calculated via 

parametrisation of empirical data over the seasons 2012-2014. For the purposes of the model, we can regard 

these states as known intermediate equity values at the location x: ball-up by umpire, throw-in by boundary 

umpire, set shot by either team, running shot by either team. Unlike the 2006 paper where play was tracked 

until the next score, the model used here truncates the equity calculation to the next stoppage or shot at goal. 

This should reduce the noise and team-specific effects due to tracking further play after the standard state. 

 

BACKGAMMON ANALYTICS 

The game of backgammon, from which the equity theory was adapted, offers reliable ways of analysing the 

mix of skill and luck employed by both players. The first and most direct method is to compare the player’s 

choice of move with a perfect evaluation, and report the error rate. For instance, if a player has to make 250 

decisions during a match, and makes 22 errors with a total loss of equity of 1.4 points versus perfect play, his 

error rate is reported as -5.6 points per 1000 moves. If his opponent’s error rate is -7.3, he can be regarded as 

playing better whether he won or lost. This measure is not perfect, as it does not take into account the relative 

difficulty of the decisions, only the extent to which match-winning probability was diminished by each choice. 

The second method employed by backgammon analysts is to measure the luck dealt by the dice, then 

subtract it from the result of the match to leave a residual skill effect. The algorithm evaluates the equity of 

each of the 21 possible dice rolls, and collects the difference between the mean of those 21 possibilities and the 

equity of the actual dice roll. This luck contribution can also be scaled using the effect on match-winning 

probability. In simplified terms, if a player won 11-8 with total luck of +2.6 points, while his opponent’s dice 

produced total luck of -1.4, then the residual displayed skill suggests that he should have lost by one point 

instead of winning by three. 

With a perfect evaluator, these two methods of skill measurement should report the same conclusion. 

Backgammon software is now superior to human experts, but is imperfect given the size of the decision tree. 

Nonetheless the two measures are very similar in most real-world situations, validating the use of luck 

measurement to expose differences in skill.  

It is well known among backgammon experts that in a typical match lasting an hour, luck dominates skill. 

Between opponents of similar expertise, the match is far more likely to be decided in favour of the luckier 

player than the more skilful one. Since the introduction of sophisticated backgammon software in the past two 

decades, this fact has become part of the common knowledge and the culture. In contrast in professional sport, 

there is very little evidence that coaches or commentators have understood this basic law of statistics: if the 

competitors are close in skill, luck will usually determine the winner of the contest. This applies at the level of 

player versus player competing for a loose ball, and at the level of team versus team over a match. 

In sport there is no such thing as a perfect evaluator, even in principle as players do not take turns using 

their own random activity generators. However, in the following sections some obvious sources of on-field 

luck will be partitioned and measured on an equity scale, reducing the error in the measurement of skill 

difference, compared to the scoreboard. 

 

3. RESULTS 

CENTRE CLEARANCES 

Winning the majority of centre clearances is clearly a factor in winning a match of AFL. As mentioned in the 

previous section, the effect of the average centre break is an immediate boost of +1.06 points of equity, with 

the winner scoring next 65% of the time. 

The result of a quarter-by-quarter linear regression of score margin vs centre clearance differential yields a 

slope of 1.00±0.17, while a match-by-match regression of the same data shows a slope of 1.28±0.48. This 

indicates that the advantage from each clearance persists through the match, but does not show any extra effect 

that might be due to collinearity between overall team skill and an ability to win centre clearances. 
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The most startling result came in the analysis of variation in team clearance percentages through the entire 

2014 season, as shown in Table 1 and Figure 2. Comparing with a Bernoulli trial model where each team has 

50% probability of winning the clearance, 17 of 18 clubs were within ±1.5 standard errors in the mean. The 

standard deviation of that collection of SEMs is just 1.06, suggesting that the entire season’s variation from 

50/50 very closely resembles noise. 

To test the reliability of the Centre Clearance indicator week to week, each team’s centre clearance 

differential was regressed against its differential in its next match. The correlation coefficient was 

approximately 0.015, even after adjusting for any home ground advantage effect (home teams averaged 12.4 

clearances to 12.0 for the away team). In other words, teams did not seem to be able to maintain any advantage 

over time, nor did they correct their deficits any more than regression to the mean would suggest. 

 

Club 
Centre Clearances Equity from Centre Clr 

Won Lost % SE in Mean Won Lost Diff Final Position 

Essendon 292 228 56.2% +2.81 1.05 -0.71 1.77 7 

Adelaide 311 280 52.6% +1.28 1.17 -0.76 1.94 10 

Sydney 274 252 52.1% +0.96 1.23 -0.81 2.04 2 

Fremantle 274 253 52.0% +0.91 1.02 -1.25 2.28 5 

WC Eagles 278 260 51.7% +0.78 1.02 -0.96 1.98 9 

W Bulldogs 280 263 51.6% +0.73 0.93 -1.09 2.02 14 

Carlton 279 273 50.5% +0.26 0.93 -1.06 1.99 13 

Port Adel 288 286 50.2% +0.08 1.42 -0.84 2.26 3 

North Melb 278 280 49.8% -0.08 1.12 -1.04 2.16 4 

St Kilda 269 277 49.3% -0.34 0.73 -1.49 2.22 18 

Melbourne 219 226 49.2% -0.33 0.81 -1.31 2.12 17 

Collingwood 247 257 49.0% -0.45 0.99 -1.01 2.00 11 

Richmond 264 279 48.6% -0.64 1.02 -1.04 2.05 8 

Gold Coast 271 291 48.2% -0.84 1.19 -1.04 2.23 12 

GWS 282 305 48.0% -0.95 0.82 -1.22 2.04 16 

Geelong 259 288 47.3% -1.24 1.37 -0.97 2.34 6 

Hawthorn 300 334 47.3% -1.35 1.39 -1.11 2.51 1 

Brisbane 250 283 46.9% -1.43 0.81 -1.39 2.20 15 

Table 1: Centre Clearance Results by Team 
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Figure 2: Equity Difference through Centre Clearance versus Centre Clearance Win% 
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There appears to be a strong negative correlation between winning a high percentage of Centre Clearances 

(Essendon being the outlier) and a reduced effectiveness of those opportunities as measured by equity.  

Additionally, there was no relationship between club quality as measured by their final position and any of the 

Centre Clearance indicators, apart from the obvious that equity metrics are higher for better teams. 

 

MEASURING LUCK 

A visualisation of the scoreboard margin as a sum of “mostly 

luck” and “mostly skill” effects has been developed. As an 

example, Table 2 shows the 2014 Preliminary Final which was 

won narrowly by Hawthorn, 15.7 (97) to 13.16 (94). 

In this match, virtually all of the measurable luck-heavy 

indicators were in Hawthorn’s favour, including conversion of 

scoring opportunities. The results of shots at goal have a heavy 

impact on the ultimate result, but are strongly dependent on 

random effects of the ball being dropped onto the swinging leg. 

A traditional media analysis of this match would have 

emphasised the dominance at clearances and “clutch” shooting 

at goal as strengths of a team that went on to win the 

premiership the next week. Instead if we choose to monitor 

more stable indicators of on-field performance, our primary 

conclusion would be that Port Adelaide was very unlucky to lose. 

For a typical AFL match, using a continuous Markov process or approximating its absorbing states by a 

Poisson distribution, we can estimate the total variance of the final margin as approximately 1060 (σ ≅ 32.5), 

varying slightly with the pace of the game. Approximately 34% of this variance is explained by the success or 

failure of shots on goal, and another 9% is explained by the clearance count. Considering the thousands of 

micro contests that happen around the ground and affect who emerges with the ball, this is a sizeable first step 

towards reducing the noise in the analysis of core performance. 

 

4. DISCUSSION 

The graph in Figure 2 caused surprise at Hawthorn FC, and requires substantial thought by experts in the sport 

as well as statisticians. The coaching group discussed what it meant if the centre clearance was effectively a 

coin flip, and how they might structure their defence, midfield and attack to respond to an event they have very 

little control over. The strong hint in the data that teams might over-invest in winning the clearance at the 

expense of resources in more impactful locations and roles is also a lesson to consider. Additionally, if the 

coaches cannot effectively intervene during the match to bring about a dominance of centre clearances – 

despite their obvious importance to the result – then they are free to stop worrying about that KPI during the 

game and focus their skills on pattern recognition and problem solving that computer algorithms cannot tackle. 

Of course there is luck in every action on the field, and plenty of it in those phases labelled as “mostly 

skill”. For any given contest, it is likely that luck dominates the difference in skill between two elite players. In 

any five-minute period, there is probably not enough data recorded to reliably inform decisions in the coaching 

box, yet almost every club speaks in terms of periods of dominance similar to this time-scale. Our obligation 

as statisticians is to patiently seek the signal in the data – quite the opposite of players who are having to 

continually react and physically respond in a complex environment. Coaches must straddle both camps, 

recognising their history as reactive players but forced to “think slow” and use their substantial knowledge of 

the game they are scrutinising to guide decisions. Classifying KPIs by importance to the result, and by the 

ability to reliably influence them, is a critical phase in sports analysis. 

The sports analytics community has accepted measures like Expected Goals in recent years, recognising 

that the difference between a shot at goal succeeding or failing can be inches, and is well-described by 

stochastic models with sufficiently accurate data. These events happen at the end of a possession chain, and 

many people can now accept the epistemological argument that the difference between what did happen, and 

what might have happened (an array of counterfactuals) is a realisable metric. 

It is harder to comprehend classifying events at the start of a possession chain in the same way, because 

we see a cascade of counterfactuals leading to an alternative reality. That way lies madness, we think, or at 

least chaos. Taking lessons from chaos theory, histories are expected to diverge at an exponential rate based on 

minuscule differences in initial conditions, and there are several decisions each second whence an alternative 

history could start its evolution. 

Mostly Luck Raw Equity 

Centre Clearances 16-12 +4 

Ball-up Clearances 11-8 +3 

Throw-in Clearances 21-14 +7 

Shots at Goal 15 / 23 +17 

Oppo Shots at Goal 13 / 31 +5 

Unrealised Equity  +2 

Mostly Skill   

After Won Clearance  -32 

After Lost Clearance  -8 

After Kick-In 7 / 15 +1 

After Oppo Kick-In 6 / 7 +4 

Table 2: Partition of Play by Phase 
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The theory of backgammon offers a solution, as long as we are willing to briefly shut our eyes to the 

continuing play and just perform the mathematics, much like quantum physicists in the Feynman mould. The 

difference between the average path from what happened and the average path from what might have 

happened is expressible in scoreboard terms. 

 

5. CONCLUSIONS 

Lefgren, Platt & Price (2012) cleverly analysed American football data to discover that coaches would change 

their game plans in reaction to a loss, even if it was uninformative because they were expected to lose to that 

opponent. On the other hand a lucky or substandard win over an inferior team would not prompt as many 

changes. Sports analytics must become better at putting information in front of coaches after it has been 

normalised, had its variance reduced if possible, and is ordered by importance to success. Approaches such as 

that outlined in this paper could be applied to AFL and other sports, modifying the way data is collected, 

counterfactuals are considered, and reporting supports decisions. 
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Abstract 
 

The relative importance of performance indicators to explain match outcome has been a recurring theme in 

team sports research. In Australian Rules football, prior studies have identified the relative importance of 

‘Inside-50’s, kicks and goal conversion rates in explaining match success in the Australian Football League. 

However, it is possible there are different characteristics between teams that influence the relative importance 

of these variables.  Therefore, this research aims to use unsupervised clustering methods to develop team 

profiles derived from summary statistics for each quarter of the game. Our data consists of commonly-reported 

performance indicators for all quarters played in the 2012, 2013 and 2014 AFL regular seasons. An initial 

random forest model was produced, from which measures of node purity revealed ‘team’ as an important 

variable in describing quarter outcome. A k-means approach was employed to classify quarters into k-types, 

independent of both team and outcome. This process revealed multiple winning methods across the range of 

score differences. Team profiles were then produced based on a team’s k-type quarter frequencies, from which 

teams were clustered into distinct styles. Reintroducing outcomes revealed that similar profiles do not always 

produce similar outcomes, suggesting that execution is not always reflected in these discrete performance 

indicators. Finally, we explore if cluster centroids can be used to understand match-ups and we demonstrate 

how our classification approach can be applied in the longitudinal analysis of individual teams to identify the 

evolution of a team’s strategy. 

 
Keywords: k-means, Data mining, Australian football, Performance analysis, Opposition analysis 

 

1. INTRODUCTION 

 

The relative importance of performance indicators to match outcome has been a recurring theme in team sports 

research (Lupo, Condore & Tessitore, 2012; Sampaio, Lago, Casais & Leite, 2010), including Australian Rules 

football (Robertson, Back & Bartlett 2015; Stewart, Mitchell & Stavros, 2007). Prior studies have identified 

the relative importance of ‘Inside-50’s, kicks and goal conversion rates in explaining match success in the 

Australian Football League (AFL) (Robertson et al., 2015). This information is routinely used by clubs as a 

descriptive insight into those components of match play considered most crucial to success. Although some 

attempts have been made to look at network analyses, a lack of access to spatiotemporal data has limited 

investigations into how these performance indicators are determined. Consequently, information relating to the 

unique characteristics of different teams based on their player and ball movement remains limited. In using the 

information currently available, the dependence these discrete performance indicators have on team is yet to be 

investigated. Understanding whether success is achieved in the same way by all teams would allow for more 

informed coaching strategies to be developed. Based on heuristic match observations to date, it is hypothesised 

that team has a significant impact on the importance levels of different performance indicators. Hence, in this 

research we wish to demonstrate this importance before proposing a methodology for clustering what will be 

referred to as team profiles. In doing so, the effectiveness of profiles within the AFL will be analysed to 

identify if a singular profile is most explanatory of match outcome. Furthermore, applications of this work will 

be demonstrated via the longitudinal analysis of team profiles as a method for match preparation. Finally, 

contextual analysis of profile matchups will reveal if team profiles are consistent or if there exists fluidity 

amongst AFL teams.  
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2. METHODS 

DATA COLLECTION 

Data was compiled for all matches played during the 2012, 2013 and 2014 AFL regular seasons. This 

information was collected from Champion Data (CIA, Champion Data Pty Ltd, Southbank, Australia)
2
 and 

included a total of 198 games for each 23-round season, producing a total sample size of 594 matches broken 

down by quarter. Each of the 2376 quarters had an entry for both teams, resulting in 4752 samples for the 

classification. For each match played during the three-year period, team totals for 22 commonly reported 

performance indicators were exported into Microsoft Excel. Data were recorded as the differences between the 

two teams, providing match context to the performance indicators. These were selected based on their 

inclusion in previous Australian Rules football (AF) studies which have demonstrated their relationship to 

outcomes (for examples, see Stewart et al., 2007; Robertson et al., 2015).  

 

RANDOM FOREST 

Data was split into training (80%) and testing (20%) sets, which were used to produce a model that explains 

Margin using the Random Forest (RF) algorithm. The RF algorithm works by producing n total decision trees, 

constructed from sampling the data, and produces an output equivalent to the mean of the total (Breiman, 

2001). The purpose of this process was to inspect the ranking of Team amongst the variable importance plots, 

Figure 1, as an indication of its importance in explaining results. In particular, a plot of node purity, Figure 1b, 

indicated Team as the fifth most important variable in respect to reducing node impurities. In order to provide 

an example of the dependence of variable importance on Team, two individual RF models were produced, one 

for each of Richmond Tigers (RT) and Western Bulldogs (WB). A mean squared error (MSE) importance plot 

was produced for these models, from which variable rankings were used to identify any differences. 

 

 
Figure 1. Variable importance plots for the RF model denoting (a) percentage increase in MSE if each variable were 

randomly permuted, and (b) the increase in node purities by splitting at each variable. 

 

QUARTER CLASSIFICATION 

A clustering approach was used to classify both team and quarter profiles across the dataset. K-means 

clustering, an unsupervised data mining technique, was chosen due to its demonstrated success in team sports 

literature (for examples, see Gyarmati et al., 2014). The k-means algorithm involves positioning k centroids 

repeatedly until equilibrium is reached when the within-cluster sum of squares (WCSS) reaches a minimum. 

This study employed a process of first classifying quarter types irrespective of Team. Thus, Team and Margin 

were removed from the analyses, before clustering the 4752 quarters into k-means clusters. The elbow method 

was used to select a k-value of 20. The elbow method involves visual inspection of the sum of squared error 

(SSE) as a function of k, identifying the preferred value for k as the value in which increasing k yields less 

improvement to SSE – i.e. the point of diminishing returns (Kodinariya & Makwana, 2013). To identify the 

presence of the most successful winning strategies in the AFL, Margin was reintroduced to the dataset and the 

average Margin (mean ± standard deviation) was calculated for each cluster.  

 

                                                
2
 https://www.championdata.com/ last accessed May 11 2016. 

https://www.championdata.com/
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TEAM CLASSIFICATION 

Team profiles were defined as a team’s frequency of each k-means quarter. Thus, a team’s profile is comprised 

of 20 variables, each corresponding to the frequency by which they experienced that quarter type. To allow for 

classification regardless of sample size, these variables were normalised as a percentage of their total quarters. 

Teams were classified into eight clusters, chosen via the elbow method, which we will refer to as the eight 

team profiles present in the AFL. As such, two teams with similar quarter clusters can be part of the same team 

profile, suggesting similarities in how they have achieved success in regards to their performance indicator 

compositions. As was the case with the quarter clusters, average margin (mean ± standard deviation) was 

calculated for each of the team clusters. While teams could have been clustered via mean performance 

indicators across the three seasons, choosing to cluster via k-means quarter cluster frequencies ensured 

variation was accounted for and required no assumptions about variable distributions. 

 To demonstrate the tactical applications of this study, the k-means centroid equation was derived from 

our team classification. Classifying a team into one of the existing team profiles involves calculating the 

Euclidean distance between a team’s quarter profiles, X, and each of cluster centroids, µs, the minimum of 

which determines a team’s classification (see Equation 1). We demonstrate the longitudinal analysis of a team 

through manually classifying individual seasons of Port Adelaide (PA), a team that experienced a change in 

coach during the seasons in this study (prior to the commencement of the 2013 season). PA were classified for 

each individual season to identify any changes in team profile in response to coaching methods. In doing so, 

this study aimed to demonstrate the application of this methodology for opposition analysis.  

 

                                                                                   
           

 ( )‖    ‖
      (1) 

 

 To explore the presence of transitive relationships in the AFL (i.e., whether a team’s profile is 

consistent or if it has a dependent relationship on their opponent’s profile), matchup profiles were created as 

the frequency of quarter types experienced by a team of Profile A when competing against a team of Profile B. 

From this, we classify a new profile, Profile AB, using the centroid equation, allowing for insights into cluster 

matchups that may inform match preparation. 

 

3. RESULTS 

RANDOM FOREST 

Results of the individual RF models, in the form of an increase in MSE plot, are presented in Figure 2. 

Notably, Inside_50s had greater importance for WB compared to RT, while RT had higher values than WB for 

the possession and accuracy score accuracy variables. Furthermore, while WB had higher values for 

Kick_HB_Ratio and HB_Efficiency, the remaining handball-related variables (HB and HB_Rec) had greater 

importance in the RT model. Mean squared errors for the individual models revealed that the RT model 

(RMSE = 8.06) was able to explain margin more effectively than the WB model (RMSE = 9.85). 

 

  
Figure 2. Percentage increase in MSE plot for the individual RF models. Note that performance indicators are ranked 

according to their relative importance for WB. 
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QUARTER CLASSIFICATION 

Summary statistics for the quarter clusters are presented in Table 1. The table reveals multiple quarter types at 

all ranges of Margin. Furthermore, there exists no cluster that achieved complete success or failure, with all 

containing winning and losing quarters. From these results, it can be noted that Clusters 4, 10, 11, 15 and 20 

produced the most favourable average Margin, while 3, 8, 9 and 14 produced the least favourable average 

Margin. 

 
Table 1. The Margin means and standard deviations for Quarter Clusters 

Cluster ID 
Margin 

mean 

Margin 

s.d. 
% Wins 

 
Cluster ID 

Margin 

mean 

Margin 

s.d. 
% Wins 

1 3.44 13.11 60.0%  11 17.24 12.47 88.3% 

2 -5.65 12.33 30.3%  12 9.41 11.69 75.7% 

3 -25.64 14.81 1.3%  13 -3.77 12.58 35.4% 

4 18.54 12.98 92.9%  14 -21.09 12.34 4.6% 

5 -1.04 13.35 46.6%  15 13.21 11.9 87.6% 
6 2.16 12.41 53.6%  16 -2.08 12.95 40.0% 

7 0.24 13.11 47.1%  17 -7.43 12.07 23.0% 

8 -19.16 14.25 8.2%  18 -7.77 12.52 28.5% 
9 -18.63 11.57 5.7%  19 4.82 13.21 66.5% 

10 26.15 15.64 95.9%  20 20.48 12.73 92.8% 

 

TEAM CLASSIFICATION 

A plot of the teams in respect to their respective mean and standard deviation of Margin is presented in Figure 

3, with summary statistics recorded in Table 2. Notably, the only team that occupied its own profile (i.e., a 

cluster containing only one object) was Geelong. Geelong’s close proximity (in regards to Margin) to multiple 

teams of different profiles enforces the notion that profile is dependent on more than outcome. Inspection of 

teams located below the x-axis origin (i.e. a mean Margin below 0) reveals that clusters 5 and 6 are dominated 

by the other four, with no team of either cluster producing favourable Margin statistics. These clusters are 

comprised of a high number of Type 2, 13 and 14 quarters, which correspond to high handball variables, low 

contested variables, and low shot accuracy variables respectively. 

 

 
Figure 3. Scatterplot of the 18 AFL teams with respect to their Margin mean and standard deviation, with shapes 

corresponding to their k-means cluster. 

 

 Individual classification of the three PA seasons revealed a change in classification from Profile 1 in 

2012 and 2013, to Profile 3 in 2014. Analysis of these individual seasons revealed the 2014 season to have the 

highest mean Margin and lowest standard deviation of the three seasons. These findings are noteworthy given 

the average profile statistics, Table 2, which suggests teams categorised in Profile 1 generally outperform 

those categorised in Profile 3. To test if this variation was inherent in all teams, this classification process was 
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tested on WB, a team who experienced no change in coach across the three seasons, who was found to be 

consistently classified as Profile 5. 
Table 2. The Margin means and standard deviations for the eight Team Profiles 

Profile ID Margin mean Margin s.d. % Wins 

1 3.69 17.85 57.8% 

2 1.21 17.91 49.7% 

3 -0.78 18.21 45.1% 

4 5.03 17.47 60.7% 

5 -5.23 17.36 36.7% 

6 -9.08 18.57 29.7% 

7 4.30 17.39 58.5% 

8 4.55 17.29 60.2% 

 

 Results of the style matchups are presented in Figure 4. These figures denote the contextual profiles 

of teams in Profile 4 (Figure 4a) and Profile 6 (Figure 4b).  Based on these results it can be noted that the two 

matchups that Profile 4 produced different performance indicator profiles against were amongst those that they 

performed poorly against. For Profile 6, reclassification occurred in their best matchup (Profile 5) and their 

worst matchup (Profile 7). 

 

 
Figure 4. Plot of individual matchups for (a) Profile 4, and (b) Profile 6, with labels corresponding to the opposing Profile. 

 

4. DISCUSSION 

This study has demonstrated the importance of Team in respect to quantifying the relative importance of 

performance indicators in the AFL. Furthermore, we have demonstrated a method for identifying similarities 

between these teams via the development of team profiles using a repeated clustering approach. This 

methodology clusters teams regardless of the distribution and averages of their performance indicator 

differences, thus accounting for the large variations when using relative values. 

 The results of the individual RF models revealed that a significant difference is observed in both the 

variable importance and the model accuracy (RMSE). This second point in particular suggests that, between 

teams, performance indicators capture different amounts of success, thus, depending on the team that is 

analysed, Margin can be predicted with varying accuracy. This reveals that some teams are more consistent in 

their use of different variables, in terms of how these variables relate to outcomes – i.e., that one team may 

execute kicking strategies more consistently, hence kicking related variables would have more impact on the 

RMSE of predictive models. 

 Classifying quarters into 20 k-means clusters revealed that, regardless of the makeup of a cluster, 

execution is not always captured via performance indicators in AF. Furthermore, while some clusters are 

objectively preferable, the existence of multiple winning types should be noted. Breaking down the dominant 

clusters (Clusters 4, 10, 11, 15 & 20) reveals distinct differences in their performance indicator makeup. For 

example, Cluster 4 is comprised of high handball related variables and low kicking, while Cluster 20 consists 

of high kicks, marks and goal accuracy. The similar success of these two clusters suggests that a single optimal 

strategy does not exist in the current state of AF. 
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 As was the case with quarters, the Team classification revealed the presence of multiple successful 

profiles. Notably, the top three teams (in regards to Margin statistics) were classified into different profiles, 

and each profile was comprised of teams of varying success in most cases. This enforces the notion that 

execution is not completely captured via performance indicators in their current state. The practical 

applications of this study were demonstrated through longitudinal and contextual (Figure 4) analysis of these 

team profiles. Contextual analysis revealed that profile matchups result in a variety of profile classification, 

suggesting that, regardless of ladder positions, gameplay may be largely responsive. While this may not be a 

new notion, our methodology provides statistical examples of this. 

 One notable limitation of this study is the use of performance indicator differences for the analysis. 

The use of differences is a step towards providing match context above the use of raw values however it may 

not capture important attributes such as the percentage differences, the pace of the match or consideration of 

sequences of events in play. Furthermore, given the nature of these statistics we can not necessarily correlate 

these profiles to game styles in their current state. However, the use of methodology that isn’t specific to data 

allows for these profiles to be developed regardless of our data source. For example, GPS data could be 

substituted for similar classification of quarter types, hence team profiles, to cluster teams based on 

movements were rich enough data available. 

 

5. CONCLUSIONS 

Prior studies into the relative importance of performance indicators have focused analyses on the playing 

group as a whole, rather than researching this importance as a function of Team. Our research has 

demonstrated the contextual importance of these performance indicators in the AFL via the development of 

predictive modelling. Team profiles were produced via consecutive k-means clustering and revealed that, in 

the current state of the AFL, success is achieved by different methods. Furthermore, longitudinal analysis of 

team classification showed that this methodology is capable of capturing a change in coaching style (for 

example Port Adelaide) and contextual analysis of these matchups suggested that a team’s profile is dependent 

on their opponent. 
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Abstract 
 
The Australian Football League’s (AFL’s) Father–Son rule is a unique player drafting rule that allows sons of 
former players to be selected by their father’s club. The rules that determine eligibility have undergone 
numerous changes since its introduction in 1949, including rules for new teams from outside of the traditional 
Victorian-based (VFL) clubs that had no history of fathers from which Father–Son selections could be derived. 
The observed number of Father–Son selections to each club is markedly different between the Victorian-based 
clubs, and between the Victorian and non-Victorian-based clubs. In this paper, a demographic model and 
player data from the AFL and the state leagues (WAFL and SANFL) are used to estimate the annual number 
of available sons to each of the AFL clubs. Results show that the observed number of selections can largely be 
explained by the number of available sons. The relatively large number of Father-Son selections to the 
Collingwood and Geelong Football Clubs (12 and 11 selections since 1986 respectively) coincides with them 
having a larger number of available sons than say the St. Kilda Football Club (3 selections). In addition, the 
model was able to provide an explanation for the lower number of Father-Son selections to the non-VFL 
aligned clubs in comparison to the VFL-aligned clubs by linking the lower estimated number of expected sons 
to the rules that were in place for these sides at the time. In particular, the Adelaide Crows (0 selections) and 
Fremantle Dockers (1 selection) have had nearly half the expected number of available sons compared to the 
Victorian-based clubs since their establishment. The model can also be used to predict the number of available 
sons into the future, and so can be used to guide management decisions regarding competitive balance if 
further modifications to the AFL’s Father–Son rule are required. 
 
 
Keywords: Player draft, demographic modelling, competitive balance 
 
1. INTRODUCTION 

The Australian Football League’s (AFL’s) Father-Son (FS) rule provides an opportunity for the sons of 
former players to preferentially be selected by the father’s club (Borland, 2006; Tuck, 2015). Introduced to the 
Victorian Football League (VFL) in 1949, the FS rule is designed to promote family traditions and allows a 
small degree of club choice beyond the more constraining reverse-order AFL player draft that was introduced 
in 1986 (Tuck et al., 2015). However, the rule also has led to contention due to the apparent inequity in clubs’ 
ability to select players through the FS rule (Rucci, 2009; Niall, 2012; Quayle, 2014). Consideration of the 
number of FS selections by club shows a broad distribution; from Collingwood and Geelong having 12 and 11 
selections respectively, to Adelaide, Fremantle and Port Adelaide having one or no selections (Table 1). If an 
implicit objective of the FS rule is to maintain equitability across clubs (through an equal probability of 
selection), then Tuck (2015) showed that a test of the assumption of an equal proportion of successes (Father–
Son selections) across all teams (accounting for years in the competition) leads to rejection of this hypothesis. 

The general principle underlying the FS rule is that if a player has played sufficient senior games for his 
club, then the player’s son has the opportunity to be selected by the father’s club. The number of qualification 
games and the sacrifices (through the draft) in order to obtain the FS selection have changed markedly over 
time (AFL, 2015; Tuck, 2015). In addition, rules were devised to allow clubs outside of Victoria, with no 
history of players, an opportunity to draft sons of fathers from their local state leagues. The non-VFL aligned 
clubs are West Coast (established 1987), Fremantle (1995) with local league the Western Australian Football 
League (WAFL), and Adelaide (1991), Port Adelaide (1997) with local league the South Australian National 
Football League (SANFL). The Brisbane Lions (via Fitzroy) and Sydney Swans (via South Melbourne) 
operate under the same qualification rules as the VFL-aligned clubs. The different rules for VFL-aligned and 
non-VFL aligned clubs immediately introduces the prospect that these rules could lead to differences in a 
club’s ability to select players under the FS rule. Examination of the selections by club (Table 1) shows that 
three of the four non-VFL aligned clubs have had the lowest number of FS selections. The current AFL rule 
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for FS eligibility requires that the father has played 100 or more senior games for his VFL/AFL club (Table 2 
and Table 1a of Tuck, 2015). The minimum number of games for qualification has been as low as 20 (Table 
3). The initial FS rule for the non-VFL aligned clubs followed the minimum games requirement of the VFL 
aligned clubs, with the additional need for the player to have played at least one game in their local state-based 
league. In 2001 this rule was removed and replaced by a state league based qualification. For the WA-based 
and SA-based clubs, fathers must have played 150 senior WAFL games or 200 senior SANFL games prior to 
the establishment of the AFL club. The 100 game AFL rule also applies (Table 3). 

Tuck (2015) showed that a more appropriate way of exploring the disparity of Father–Son selections than 
considering selections by year is to consider the expected number of sons that are available to each of the 
clubs. The number of fathers that qualify will differ between clubs and, depending on their age, the expected 
number of sons to those fathers will differ over time. Using a demographic model and updated player data 
from the VFL/AFL, this paper refines and updates the model of Tuck (2015). Further details of the model, data 
used, qualification rules and history of the Father-Son rule can be found in Tuck (2015). This paper also 
corrects Rule 12 of Table 1a of Tuck (2015) where the years over which the games qualification for WA and 
SA clubs differed (see Table 2). This change made only minor differences to the resulting estimated expected 
sons, and does not change the conclusions of that paper. 
 

Club Number of 
selections 

Seasons since 1986 
or from establishment 

Number per 
season 

Collingwood 12 30 0.400 
Geelong 11 30 0.367 
Carlton 9 30 0.300 
Essendon* 7 30 0.233 
Western Bulldogs 7 30 0.233 
Melbourne 6 30 0.200 
Richmond 6 30 0.200 
West Coast 5 29 0.172 
Sydney Swans 5 30 0.167 
Brisbane  3 29 0.103 
Hawthorn 3 30 0.100 
St. Kilda 3 30 0.100 
North Melbourne 2 30 0.067 
Fitzroy 1 9 0.111 
Port Adelaide 1 19 0.053 
Fremantle 1 21 0.048 
Adelaide 0 25 0 

 
Table 1: Father-son selections by club. The number of Father-Son selections by each AFL club between 1986 
and 2015, the number of seasons each club could have had a Father-Son selection since 1986, and the number 

of selections per season. The non-VFL aligned clubs are in bold. Brisbane refers to a combination of the 
Brisbane Lions and Bears. * includes two rookie Father-Son selections. 

 
2. METHODS 
PLAYER DATA 
The number of games played is the key data requirement for an exploration of the number of players that 
qualify under the FS rule. Player data (games, birth year, state of origin) were obtained from the AFL for all 
players between 1897 and 2015 (source: AFL, March 2016). Data for the WAFL and the SANFL were 
obtained from those leagues and various club historians and websites.   
 
PATERNITY RATES 
To estimate the expected number of sons by eligible player and year, data on paternity rates are needed. Age-
specific paternity rates (ASPR) are not publicly available. As such, ASPR was estimated from annual age-
specific fertility rate (ASFR) data from 1921 to 2014 obtained from the Australian Bureau of Statistics (ABS). 
ASFR was transformed to ASPR using the ratio of the known paternity to fertility rates from 2014 (ABS, 
2015a,b; Tuck, 2015). 
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FS Rule 
# 

First year of 
application 

Rule and amendments 

11 2001 The clause that allowed sons of the President, Vice President, General Manager, 
Senior Coach or Elected Member of the Senior Grade Committee of any Club 
was deleted. 

12 2001 A State League games qualification was introduced for WA (150 WAFL senior 
games) and SA (200 SANFL senior games) Clubs. These games must have been 
played during the period 1967-1987 for West Coast, 1975-1995 for Fremantle, 
1970-1990 for Adelaide (note Adelaide began in 1991) and 1977-1997 for Port 
Adelaide. Included a “sunset” clause noting this provision would be in place for 
a 20 year period from the time the particular Club entered the competition.  

13 2003 The VFL/AFL qualification increased to 100 games.  
14 2003 The QAFL and SFL eligibility clauses were removed due to the Sydney/South 

Melbourne, and Brisbane Lions/Brisbane Bears/Fitzroy father-son provisions 
being more relevant and applicable 

15 2006 The WA and SA AFL Clubs 150 and 200 State League games qualification was 
amended with the “sunset” clause replaced with a provision noting the father of 
the player must have played the relevant home and away and finals series 
matches prior to but not including the year the Club entered the AFL 
competition. 

Table 2: The Father-Son qualification rules since 2001 with their year of first application (R. Austin, pers. 
comm.; Guide to the AFL Player Draft System, and AFL National Draft pamphlets). Rule 12 has been 

amended from Tuck (2015). For the full set of qualification and selection rules, see Table 1 of Tuck (2015). 
 
MODEL DESCRIPTION 
A detailed description of the model equations can be found in Tuck (2015) and is not repeated here. However, 
essentially the model follows the steps below: 

1. Determine the eligibility of every player in the VFL/AFL, SANFL and WAFL, given a Father-Son 
rule, s. 

2. The birth year of an eligible father f is then used in combination with the ASPR and annual sex-ratios 
(ABS, 2015a) to determine the expected number of sons in a particular year y if the father is of age a. 

3. The expected number of sons is then translated forward 18 years (the drafting age), assuming 
negligible mortality between birth and 18 years of age. 

4. The number of expected sons in a particular year for club c under Father–Son rule s is then the sum 
over each of these expectations for each eligible father from each club over all child-bearing ages of 
the father (ages 15–50), where account is taken of multiple club eligibility (the expectation is divided 
between clubs). 

5. As there have been several changes to the Father-Son rules, the expectations are calculated for each 
rule and then combined in accordance with the years over which the rule applies. 

The procedure is illustrated in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: A diagrammatic representation of the demographic model. The hollow arrows in the right hand box 

represent the sum of expected sons across all eligible fathers of a club for a particular year. 
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3. RESULTS 

• The annual number of expected sons by club changes markedly as eligibility rules change (Table 3). 
• Large differences in annual expected sons exist between VFL-aligned clubs (Richmond, St Kilda, 

Sydney less than Hawthorn and Essendon). 
• Differences also exist between non-VFL aligned clubs, with Adelaide having less expected sons than 

Port Adelaide (likely due to Adelaide having 2 less associated SANFL clubs; Tuck, 2015), and 
Fremantle less than West Coast. 

• Longitudinal comparisons (Table 4) between VFL-aligned clubs show that since 1986, Collingwood, 
Hawthorn and Geelong have had the greatest number of expected sons, while St. Kilda and 
Melbourne have had the least (see the ‘Since 1986 (VFL)’ column). 

• For the non-VFL aligned clubs, the expected number of sons following their establishment is 
considerably lower than the VFL-aligned clubs (eg see the ‘Since 1991 (ADEL)’ column of Table 4). 

• Following the introduction of the state-based FS rules (in 2001), this disparity has largely disappeared 
(see the ‘Since 2001’ column of Table 4). 

• Projections of expected sons from 2016 to 2025 show that West Coast, Melbourne and Essendon have 
the largest values, while St. Kilda and Richmond have the lowest expected sons over this period 
(Table 3). 

 
4. DISCUSSION 

The AFL’s Father-Son rule is a unique (among major sporting leagues) player drafting rule that allows the 
romanticism of family traditions to continue within a club (Tuck, 2015). However, the rule has also been 
controversial as it can override (AFL, 2015) the basic reverse-order annual player draft that may have allowed 
the player to be drafted by an alternate, possibly lower-ranked, club. In addition, there is also an apparent 
disparity in the ability of clubs to obtain players through this rule (Table 1; Niall, 2012; Quayle, 2014; Rucci, 
2009). Since 1986, Collingwood and Geelong have had the most selections (with 12 and 11 selections each), 
while North Melbourne, Port Adelaide, Fremantle and Adelaide have had the least (with 2, 1, 1 and 0 
respectively). As a consequence, the recent successes of the Collingwood and Geelong Football Clubs have 
been linked to their high quality Father-Son selections (Niall, 2012; Anderson, 2013).  

To explore the apparent broad distributions of selections, Tuck (2015) introduced a demographic model 
that determined player eligibility for every VFL/AFL, SANFL and WAFL player under the various FS rules, 
and then projected paternity rates to produce an expected number of sons for each player, each club and each 
year. This paper has updated that work. Results here (and in Tuck (2015)) showed that the expected number of 
sons by club generally matched the actual observations of selections. This indicates that the number of 
selections by club are, not surprisingly, a function of the number of eligible fathers (i.e. the number of players 
having played more than the minimum required games and the FS rule that applied at the time). While outside 
the scope of this analysis, it should also be recognised that there may also be preferential selection of clubs by 
eligible players that strongly desire to be at certain clubs (having been fostered through club Father-Son 
academies for example). 

The lower number of expected sons to the non-VFL aligned clubs following their establishment is likely 
due to the initial FS rules where eligible players for a non-VFL aligned club were also eligible for VFL-
aligned clubs (thus halving, at least, the expected sons). If a more equitable distribution of expected sons (since 
establishment of the non-VFL aligned clubs) is a desirable management objective, then this model could be 
used to explore alternative minimum game thresholds. Namely, the 150 and 200 game threshold for the WAFL 
and SANFL could be reduced, or the 100 game threshold for the VFL-aligned clubs could be increased. 
However, an analysis of the labour regulations for the non-VFL aligned clubs should also recognise that these 
clubs were provided additional assistance during their establishment, e.g. in the form of moratoriums on 
drafting players from WA and SA for the clubs outside of these states (Macdonald and Booth, 2007). In 
addition, it is also worth noting that since the state-based rules were introduced in 2001 (Table 2, Rule 12), the 
expected number of sons for the non-VFL aligned clubs has increased (Table 4; ‘Since 2001’ column). As 
stated by Tuck (2015), this does not appear to have increased the number of selections for the non-VFL 
aligned clubs, with only three state-based selections (players Peake, Ebert, Morton) to the four non-VFL 
aligned clubs since 2001, in comparison to 39 selections for the 12 VFL-aligned clubs over the same period.  
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Minimum 
VFL/AFL 
games 

20 50 

WA/SA 
Clubs  Club qualification through minimum games rule and at least one game in the local league 

 

1986 

1987 

1988 

1989 

1990 

1991 

1992 

1993 

1994 

1995 

1996 

1997 

1998 

1999 

2000 

ADEL 
     

0.6 0.6 0.3 0.4 0.4 0.4 0.3 0.3 0.4 0.4 
BRIS 

 
0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 2.3 2.3 2.4 2.3 2.3 

CARL 4.8 4.8 4.8 4.8 4.3 4.1 3.7 2.2 2.0 2.0 2.0 2.0 1.9 1.8 1.9 
COLL 5.3 5.3 5.1 5.2 4.9 4.4 4.2 2.5 2.5 2.3 2.2 2.2 2.1 2.2 2.2 
ESS 4.4 4.6 4.4 4.8 4.5 4.0 3.8 2.2 2.3 2.3 2.2 2.1 2.2 2.3 2.4 
FITZ 5.0 4.9 4.8 5.0 4.7 4.3 4.0 2.5 2.3 2.2 

     FREM 
         

0.7 0.7 0.7 0.7 0.8 0.8 
GEEL 5.6 5.5 5.4 5.5 5.0 4.4 4.1 2.3 2.2 2.2 2.1 2.1 2.0 2.1 2.1 
HAW 5.1 5.0 4.9 5.0 4.7 4.1 3.7 2.4 2.2 2.2 2.2 2.2 2.1 2.1 2.1 
MELB 4.7 4.7 4.7 4.8 4.6 4.2 3.8 2.0 1.9 1.8 1.8 1.7 1.7 1.8 1.9 
NTH 4.9 4.7 4.8 5.2 4.9 4.1 3.7 2.5 2.6 2.5 2.4 2.2 2.2 2.2 2.1 
PORT 

           
0.3 0.3 0.3 0.4 

RICH 5.4 5.3 5.2 5.3 4.9 4.4 4.0 2.2 2.1 2.0 2.0 1.9 1.9 1.9 1.9 
STK 4.8 4.7 4.8 4.8 4.3 3.9 3.6 2.4 2.2 2.1 2.1 2.1 2.0 2.0 2.0 
SYD 5.7 5.6 5.7 5.8 5.4 4.5 4.1 2.3 2.3 2.3 2.2 2.1 2.1 2.1 2.2 
WESTC 0.0 1.1 1.1 1.2 1.2 1.2 1.2 1.0 1.0 0.7 0.7 0.8 0.8 1.0 1.0 
WsB 5.5 5.3 5.2 5.3 5.1 4.6 4.1 2.2 2.1 2.0 1.9 1.9 2.0 2.1 2.0 

 
Minimum 
VFL/AFL 

games 
50 100 

WA/SA 
Clubs 

State-league eligibility 
through the WAFL/SANFL State-league eligibility amended 

 
2001 

2002 

2003 

2004 

2005 

2006 

2007 

2008 

2009 

2010 

2011 

2012 

2013 

2014 

2015 

 

2016 
2025 

ADEL 1.3 1.3 1.4 1.4 1.3 1.4 1.4 1.4 1.4 1.3 1.2 1.3 1.3 1.3 1.2  13.5 
BRIS 2.5 2.5 1.2 1.1 1.2 1.2 1.2 1.3 1.4 1.4 1.4 1.4 1.4 1.5 1.5  15.7 
CARL 2.2 2.1 1.4 1.3 1.4 1.5 1.4 1.5 1.4 1.5 1.5 1.4 1.4 1.4 1.4  14.4 
COLL 2.3 2.1 1.4 1.4 1.5 1.4 1.4 1.5 1.4 1.5 1.5 1.5 1.5 1.4 1.4  14.4 
ESS 2.5 2.3 1.3 1.3 1.3 1.3 1.4 1.5 1.4 1.5 1.4 1.5 1.5 1.5 1.5  16.2 
FITZ 

           
      

FREM 0.7 0.7 0.9 0.9 0.8 1.4 1.4 1.5 1.4 1.4 1.3 1.3 1.4 1.4 1.3  13.7 
GEEL 2.2 2.2 1.4 1.3 1.3 1.2 1.3 1.4 1.3 1.4 1.4 1.4 1.4 1.3 1.4  15.0 
HAW 2.3 2.3 1.6 1.6 1.5 1.5 1.6 1.6 1.7 1.6 1.5 1.6 1.5 1.6 1.6  15.6 
MELB 1.9 2.0 1.0 1.0 1.0 0.9 1.1 1.2 1.2 1.3 1.2 1.4 1.4 1.4 1.5  16.6 
NTH 2.4 2.3 1.3 1.1 1.1 1.1 1.2 1.3 1.1 1.2 1.3 1.3 1.3 1.2 1.3  14.1 
PORT 0.9 1.0 1.2 1.4 1.4 1.8 1.7 1.9 1.9 1.9 1.7 1.6 1.7 1.6 1.6  14.7 
RICH 2.2 2.1 1.1 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0  12.1 
STK 2.2 2.1 0.9 0.8 0.8 0.8 0.8 0.8 0.8 0.9 0.9 0.8 0.8 0.9 0.9  10.8 
SYD 2.5 2.4 1.0 0.9 0.9 1.0 1.0 0.9 0.9 0.9 1.0 1.0 1.0 1.0 1.0  12.7 
WESTC 1.4 1.3 1.3 1.2 1.1 1.6 1.7 1.8 1.7 1.7 1.8 1.9 1.8 1.7 1.8  18.4 
WsB 2.1 2.0 1.4 1.4 1.3 1.2 1.3 1.3 1.3 1.4 1.3 1.3 1.3 1.3 1.3  15.0 

Table 3: The estimated annual expected number of available sons for each club from 1986 to 2015. Shaded 
cells indicate years where there were one (light shaded) or two (dark shaded) Father-Son selections for a club. 
The vertical lines delineate periods of substantial rule changes (Table 2; Tuck, 2015 Table 1a). The estimated 

total expected number of sons over the 10-year period 2016 to 2025 is also shown. 
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5. CONCLUSIONS 
• A demographic model that estimates the annual number of expected sons by AFL club was largely 

able to explain differences in observed Father-Son selections 
• The model can also explain the lower number of selections for the non-VFL aligned clubs 
• Projections of expected sons by club showed that some clubs will have substantially more expected 

sons over the next 10 years than other clubs 
• The model could be used as a decision making tool if further changes to the Father-Son rule are 

required for competitive balance 
 

  
Since 1986  

(VFL-aligned) 
Since 1987 
(WESTC) 

Since 1991 
(ADEL) 

Since 1995 
(FREM) 

Since 1997 
(PORT) 

Since 2001 
(SA/WA changes) 

ADEL 
  

24.0 22.0 21.3 19.9 
BRIS 

 
34.3 34.1 33.8 31.4 22.1 

CARL 70.1 65.3 46.6 34.7 30.6 23.1 
COLL 75.6 70.3 49.9 36.2 31.7 23.0 
ESS 71.6 67.2 49.0 36.6 32.1 23.1 
FITZ 39.7 34.7 15.4 2.2 

  FREM 
   

22.3 20.9 17.9 
GEEL 74.3 68.7 47.3 34.3 30.0 21.7 
HAW 75.3 70.2 50.6 38.2 33.7 25.1 
MELB 66.0 61.3 42.4 30.4 26.8 19.7 
NTH 71.5 66.6 47.1 34.1 29.2 20.5 
PORT 

    
24.7 23.4 

RICH 68.0 62.6 41.9 29.3 25.3 17.6 
STK 63.2 58.4 39.8 27.7 23.5 15.3 
SYD 71.7 66.0 43.6 30.3 25.8 17.2 
WESTC 

 
37.8 33.2 28.8 27.4 23.9 

WsB 72.9 67.4 46.5 33.5 29.5 21.3 
Table 4: The estimated expected number of available sons for each club summed across all years from a 

specified year until 2015. For example, as West Coast (WESTC) was established in 1987, their expected sons 
(shaded, 37.8) can be compared to other clubs by considering the ‘Since 1987’ column. 
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Abstract 
The depth and quality of individuals within an available talent pool is found to be a function of demand.  This is 

demonstrated by comparing globally-scaled individual performance metrics with measures of demand. 

   In order to find a substantial population base with a wide, deep reaching audience of varied ability and 

quantifiable performance metrics, computer programming ability is evaluated across a variety of languages.  

Public code repositories, such as GitHub, are accessed and the code quality assessed algorithmically. 

     The underlying family of probability distributions for measures of computer programming ability is roughly 

gamma for each programming language.  Importantly, the shape parameters for each gamma distribution are 

positively correlated with the number of job advertisements listed. 

      Given the nature of this relationship, as the number of job advertisements for a programming language 

increases, the distribution tends to become less right skewed.  From a practical perspective, the upper tails of the 

distribution are most telling when looking to build an elite team, whether this be for rugby, cricket or a group of 

developers within a business environment.  The presence of fatter upper tails indicates a greater prevalence of 

high performing talent within a neighbourhood of acceptable performance.  In instances where there is lower 

demand, the tails are thinner indicating a greater gap in ability between high performers and those of lesser 

quality. 

     These findings have longer term ramifications for understanding the quality of representative teams for sports 

which are losing player numbers, such as rugby in New Zealand.  Alternatively, the underlying metrics could 

potentially be used to forecast elite performance or monitor throughput within academy environments. 
 

Keywords: Gamma Distribution, Performance Monitoring 
 

1. INTRODUCTION 

The depth and quality of individuals within an available talent pool is found to be a function of demand.  This is 

demonstrated by comparing globally-scaled individual performance metrics with measures of demand.  While 

the research framework is applied to coding ability in this context, the approach could be expanded to look at 

historical participation rates within sport and team ratings. 

 

2. BRIEF REVIEW OF PROBABILITY DISTRIBUTIONS AND RATINGS 

There is no shortage of academic research that examines the performance of individuals, groups and teams 

within a wide variety of contexts (e.g. Clarke et. al., 2011; Cook et. al., 1988; Croucher, 2000; Di Salvo et. al., 

2010; Gerber et. al., 2009; Kimber et. al., 1993; Lemmer, 2004).  

     Concepts exploring latent factors, such as intelligence, are well researched (e.g. Zhang et. al., 2011; Moon et. 

al., 2005; Silvia et. al., 2008; Cummings et. al. 2005).  Substantial research has also been invested into the 

underlying probability distributions for performance metrics and individual ratings for a variety of sports (e.g. 

Bracewell et. al., 2009; Bukiet et. al., 2006; Damodaran, 2006; Kimber et. al., 1993; Koulis et. al., 2014).  

However, individual privacy restricts open access to individual performance data, particularly about on-the-job 

performance. For this reason, elite sport data, which is highly prevalent on the internet (e.g. 

www.espncricinfo.com, www.optasports.com, www.championdata.com, www.espnscrum.com) has been used 

for a range of analytical exercises regarding quantifying performance and ability. 

     Sports research has also investigated the relationship between the size of a talent pool and the expected 

performance.  “Larger countries have a deeper pool of talented athletes and thus a greater chance of fielding 

medal winners (Bernard & Bruss, 2004, p. 413)”.  However, total gross domestic product (GDP) for a nation is a 

better predictor of national Olympic performance than size alone, which implies access to resources for 

investing in the talent development is critical to success (Bernard & Bruss, 2004).  Another potential factor 

http://www.espncricinfo.com/
http://www.optasports.com/
http://www.championdata.com/
http://www.espnscrum.com/
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driving national performance is the internal competition within that nation.  However, many competitions do not 

publish data from domestic or amateur competitions.   

     The impact of demand on the quality and depth of an elite talent pool has limited research in the sports 

sector.    From an economic perspective, Rosen (1981) explored the earning potential for individuals in a variety 

of disciplines given quality, supply and demand constraints.  Although similar, the emphasis in this research is 

to understand how demand shapes the depth and quality of a talent pool.        
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3. DATA SOURCING 

In order to find a substantial population base with a wide, deep reaching coverage of individuals of varied ability 

and quantifiable performance metrics, computer programming ability is evaluated across a variety of languages.  

Public code repositories, such as GitHub, were accessed and the code quality assessed algorithmically.  A 

random sample of 8264 individuals located in Australia and New Zealand was processed by an Australian-

domiciled third party, Lumnify.  Lumnify have developed several proprietary algorithms for quantifying code 

quality and code maintainability (Lumnify, 2015).  These algorithms enable Lumnify to estimate the quality of 

developers across a wide range of programming languages.  The underlying premise is that the observed outputs 

in these public repositories are a manifestation of ability.   

     To quantify demand, the number of Job Applications featuring various languages was obtained by searching 

the job website Seek (www.seek.co.nz, www.seek.com.au) on 16
th

 December, 2015.  The number of job 

advertisements within the Information, Communication and Technology (ICT) category and observed 

exclusively within New Zealand or Australia were recorded for each language of interest (see Table 1). 

     Data was also obtained from CoderCred (www.codercred.com) evaluating the performance of individuals on 

a range of pre-defined programming challenges.  CoderCred measures programming performance by using a set 

of industry relevant, time bound programming challenges.  The CoderCred Event Score mathematically 

combines the Accuracy, Timeliness and Difficulty from a series of challenges undertaken by a coder.  The 

proprietary mathematical weightings that combine these three attributes into a meaningful predictive measure of 

performance are defined by a non-linear optimisation routine.  The purpose of this data is to independently 

validate the Lumnify scores. 

     Given the commercially sensitive nature of the proprietary data acquired from Lumnify, the data are 

aggregated into performance-based bins (Table 1). 

      
 

4. DATA PROCESSING 

Independently, individual Lumnify scores were validated using CoderCred’s scoring framework, which is 

constructed on the premise that performance on well-constructed, relevant tests is a strong predictor of future 

performance.  The correlation between the Lumnify passively acquired scores and CoderCred’s actively 

obtained challenge scores have a correlation of 0.78 (n=31). 

     The random sample was representative of the demand population, with a correlation of 0.74 observed 

between the observed sample counts and job demand (see Table 1).   

Summary statistics, including the mean and standard deviation, were calculated from the aggregated data, using 

the midpoint of the score range.  Skewness, g, was calculated using the adjusted Fisher-Pearson standardized 

moment coefficient using the sample standard deviation, s, and sample size, n, as follows: 

  
 

(   )(   )

∑ (    ̅) 
   

         (1) 

     The gamma distribution is widely used to model physical quantities that take positive values (Kimber, 1993) 

and is capable of representing a variety of distribution shapes (Smith, 1993).  Given these reasons and the 

gamma distribution’s ability to mimic the attributes of other distributions (Tough, 1999) makes it a useful basis 

for modelling programming behaviour by language. 

     From the sample mean, ̅, and standard deviation, s, the shape, α, and scale parameters, β, for the gamma 

distribution were calculated as:   
 ̅ 

   and   
  

 ̅
. 

     Overlaying the expected count upon the observed counts in the Figure 1 reveals that the gamma distribution 

appears to be a reasonable fit.  To ensure that the counts in the under 35 and 36-45 bins do not visually 

dominate, a log scale is used to show the fit, particularly in the right-hand tail.   

 

 
      

Figure 1: Histograms showing Coder Quality with Expected Distribution Overlaid. 

http://www.seek.co.nz/
http://www.seek.com.au/
http://www.codercred.com/
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Table 1. Key Metrics for Assessing Coder Quality and Demand in Australia and New Zealand 

 

5.  SUMMARISING PERFORMANCE WITH PROBABILITY DISTRIBUTIONS 

Comparing the cumulative observed and expected percentages per language using scatterplots suggested that the 

gamma distribution was a reasonable approximation. However, a goodness-of-fit test was applied to confirm 

that the data approximately followed a gamma distribution.  Given the aggregated nature of the data, a Pearson’s 

chi-square test was used to measure goodness-of-fit.  However, these results indicated the null hypothesis, that 

the data fits a gamma distribution, cannot be accepted at a 5% level of significance for any of the languages.  To 

test this hypothesis more rigorously, more granular data is required. 

     If the gamma distribution is considered an inappropriate fit, measuring the skewness for each distribution has 

the effect of summarising the underlying behaviour of interest.  That is, the lower the demand, the more the 

distribution becomes right skewed.  The implication is that for jobs with lesser demand, the thinner tails 

observed in a right skewed distribution imply that there is likely to be a disproportionally smaller talent pool.  

This effect is observed below in Figure 2, where the natural log of demand is plotted against skewness. 

     However, the shape of the distribution may have no bearing on the proportion of individuals capable of 

performing at a certain level, due to the influence of the underlying scale and location of the distribution 

describing code quality.  To test this impact, demand is compared with the observed proportion of individuals 

with a code quality score of 95 and above.  Figure 3 below shows that as the natural log of demand increases, so 

does the percentage of individuals scoring 95 or above for overall code quality.   

 

C C# C+ Java Javascript Objective C Perl PHP Python Ruby

<35 294 67 162 238 452 99 78 119 662 701

45 94 60 107 187 279 56 3 79 130 52

50 32 27 27 32 110 14 2 29 31 70

55 27 22 24 47 280 12 0 48 11 13

60 51 41 60 62 228 20 2 55 27 57

65 37 41 40 61 124 29 2 39 35 46

70 31 17 32 36 73 16 0 67 7 5

75 23 49 35 83 133 25 1 58 25 24

80 23 39 31 66 88 19 0 43 9 13

85 29 41 36 39 114 36 0 95 10 6

90 40 46 28 53 185 24 4 115 7 14

95 37 31 23 37 152 21 1 60 9 8

>99 4 3 2 6 26 3 0 11 3 0

Total 722 484 607 947 2244 374 93 818 966 1009

Mean 46.8 61.1 51.5 52.4 56.0 54.5 29.3 63.5 32.5 33.3

Stdev 24.5 22.1 22.8 22.9 23.0 24.6 17.3 23.3 17.2 18.0

Skewness 0.50 -0.36 0.15 0.13 0.02 0.00 2.64 -0.51 1.75 1.49

Demand NZ 86 192 38 174 247 43 9 58 66 45

Demand AU 741 1195 362 1621 2037 306 232 810 539 381

Demand 827 1387 400 1795 2284 349 241 868 605 426

Alpha 3.6 7.6 5.1 5.1 5.9 4.9 2.9 7.5 3.5 3.4

Beta 12.9 8.0 10.1 10.2 9.5 11.1 10.2 8.4 9.3 9.8

5.7% 7.0% 4.1% 4.5% 7.9% 6.4% 1.1% 8.7% 1.2% 0.8%

4.5% 7.6% 4.7% 5.1% 6.2% 6.7% 0.4% 9.6% 0.5% 0.6%Expected Prop. ≥95
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Figure 2.  Scatterplot with trend line showing the negative relationship between the natural log of job demand in 

different languages and the skewness of the observed code quality distribution. 

 

 
 

Figure 3.  Scatterplot with trend line showing the positive relationship between the natural log of job demand in 

different languages and the percentage of coders scoring 95 or above. 

 

     Although statistically the fit of the gamma distribution was rejected, it is useful for explaining the behaviours 

in the tail.  Using the fitted gamma distribution for each language, the correlation between the expected 

percentage of observations scoring 95 and above and the corresponding observed number of observations is 

0.96.  More importantly, the linear relationship to predict the expected percentage from the observed percentage 

had an intercept of 0 and slope of 0.99.  Furthermore, the correlation between the observed skewness for each 

distribution and the inverse square root of the corresponding shape parameters α is 0.92.  As skewness for the 

gamma distribution is 2α
-0.5

, this result is not unexpected.   

     These last two points suggests that it is worthwhile to explore the probability distribution for coder quality 

further using actively acquired data where greater controls regarding data collection are present. This data will 

be obtained from CoderCred in the future. 

 

6. DISCUSSION AND CONCLUSION 

As the number of job advertisements for a programming language increases, the distribution of coder quality 

tends to be less right-skewed.  The assumption is that because right-skewed distributions have thinner tails the 

relative depth of coder quality is lower in programming languages where there is less demand.  To validate this 

assumption, the relative thickness of the right-hand tail of the distribution was assessed by comparing the 

observed percentage of individuals with code quality of 95 or above.  This confirmed that there is a relationship 

between demand and the relative depth of the talent pool.  Whether in the programming community the depth of 

talent pool is driven by competition, knowledge sharing or availability of resources, this phenomenon has wider 
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implications for a range of business decisions.  These decisions will range from hiring policies, training and 

development, adoption of technologies and a greater appreciation for the true cost of maintainability. 

     From a practical perspective, the upper tails of the distribution are most telling when looking to build an elite 

team, whether this be for rugby, cricket or a group of developers within a business environment.  The presence 

of fatter upper tails indicates a greater prevalence of high performing talent within a neighbourhood of 

acceptable performance.  In instances where there is lower demand, the tails are thinner indicating a greater gap 

in ability between high performers and those of lesser quality. 

     Further work is required to understand if this behaviour observed in the programming community is mirrored 

in elite team sport.  Understanding this relationship would assist sporting organisations in demonstrating the 

longer term return on investment for community development initiatives.  These findings have longer term 

ramifications for understanding the quality of representative teams for sports which are losing player numbers, 

such as rugby in New Zealand (Mathers, 2014; Napier, 2015; Robson, 2014).  Alternatively, the underlying 

metrics could potentially be used to forecast elite performance or monitor throughput within academy 

environments. 
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Abstract 
 

Current sensor, battery power and computing technologies allow for the feasible development of wearable 

coaching devices that can provide active, real-time feedback to athletes as they train. Single purpose devices 

that, for example, measure grip pressure for golf or pedalling cadence in cycling have been developed and are 

being used successfully. More general, quantification, systems that can identify (classify) and quantify 

durative activities with similar characteristics such as walking, running and cycling have been developed for 

smart phones and smart watches. However, systems capable of identifying multiple activities and applying 

different active, real-time feedback with differing requirements such as those needed for a backhand versus 

forehand shot in tennis have yet to be developed. One of the barriers to the development of multi-activity 

feedback systems is the complexity related to classifying those activities in real-time. Recent research has 

produced reliable classifiers for a number of durative activities but little work has been done on successful 

punctual activity classifiers within sports. Punctual activities are short, non-cyclic activities such as getting on 

a horse, turning a door handle or picking up a cup while durative activities occur over a longer time period and 

generally have a cyclic or rhythmic nature such as walking, running, cycling, rowing and swimming. The 

sensor signals associated with very short, punctual activities can be difficult to differentiate from the 

background signal. This work discusses the role of activity classification within real-time feedback systems, 

identifies a gap in the research related to punctual activity classifiers and briefly reports on ongoing research to 

address this gap using recurrent neural networks in the form of Echo State Networks.  
 

Keywords: eCoaching, Punctual Activity Classification, Activity Classification, Wearable Sensors, 

Echo State Networks, Reservoir Computing 

 

1. INTRODUCTION 
Providing appropriate feedback is one of the fundamental roles of a coach and so should also be fundamental 

to embedded and/or wearable electronic coaching devices that provide real-time feedback on technique. Sports 

coaching feedback can take a number of forms with the aim of improving physical conditioning (strength, 

endurance and rehabilitation training), psychological performance (confidence, goal setting and strategising) 

and technique (technical and physical skills) (Cote & Gilbert, 2009; Strand, Benson, Buck, McGill, & Smith, 

2014). This work concentrates wholly on providing feedback on technique and any associated technology. 

A number of embedded and wearable devices have been developed to assist with providing some of this 

feedback. Most of these devices have been single purpose devices that measure, quantify or provide feedback 

on a single activity. More general purpose systems and devices capable of quantifying a variety of activities 

have been developed for smart phones, smart watches and fitness monitoring (e.g. FitBit).  

With single purpose/single activity devices activity recognition (classification) is generally much simpler 

and sometimes trivial. The more generalised devices that quantify a number of different activities need more 

sophisticated activity classifiers. There are now generally available classifiers that are quite reliable for a small 

group of activities. These include such activities as walking, running and cycling, for example. On close 

inspection it will be noted that this group of activities has common characteristics, they tend to be longer 

activities with a rhythmic component to them and may be classed as Durative activities (D. P. Hunt & Parry, 

2015).  Some short, non-rhythmic activities (Punctual activities) such as swinging a baseball bat (e.g. Zepp 

smart Baseball bat) or serving in tennis (e.g. Zepp Tennis kit) do have embedded and/or wearable devices 

associated with them but these devices are single purpose and their associated activity classifiers are generally 

simplistic. 

The accepted techniques used to classify durative activities such as walking, cycling and running utilise 

the rhythmic nature of these activities and often use features from the frequency domain in their classifiers. 

This can produce reliable results (Takacs et al., 2014), but these classification algorithms and in particular the 

frequency domain features that they rely on take some time to adjust at the start and end of an activity. This is 

generally not an issue for these durative activities because missing the first and last couple of seconds of 

running is not a big deal when running for ten minutes but it does mean that these techniques are much less 
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reliable when used for punctual activities that may occur in less than a second or two. This highlights that there 

is a gap in the research and a need for classifiers and associated features that are capable of reliably 

recognising punctual activities. 

 

2. WHAT USE IS AN ACTIVITY CLASSIFIER? 
Activity classifiers have a wide range of uses, not only within a sports coaching context but also within a much 

wider context. Activity Classification Systems (ACS) are a key component of any system that purports to 

adapt to what a human being is doing at a particular time. ACS are also useful in an auditing context, e.g. Did 

the nurse unscrew the cap of pill bottle?; Did the patient do their physiotherapy exercises?; Did the automotive 

assembly worker fit the part using the required technique?; Did the trainee surgeon use the scalpel with the 

recommended pressure? Did the athlete do the requested number of squat exercises? 

Within coaching, ACS are used to identify the current activity so that it can be quantified and/or recorded, 

as an adjunct to make the device “smarter” and more usable and/or to identify the current or next activity in 

order to provide appropriate feedback on that activity. In wearable coaching systems that provide real-time 

feedback they are especially necessary to ensure that the feedback is only provided when needed. The 

wearable riding coach proposed in Schliebs, Kasabov, Parry, and Hunt (2013) requires multiple ACS and these 

modules allow the overall system to identify the current activity, to help predict the possible next activity and 

to ensure that any coaching feedback is only provided when needed. For example, an equestrian athlete may be 

wearing the riding coach but not (yet) riding and so it would be pointless to provide feedback until the athlete 

was actually riding.  

In summary, an ACS is an essential component of almost every smart feedback system based on human 

motion and this is confirmed by Baca (2012, p. 2) where he states explicitly that "One main basis of almost 

any intelligent feedback system or adaptive system is the successful recognition or classification of patterns 

underlying the human motion just performed".  

 

3. WHAT ARE DURATIVE AND PUNCTUAL ACTIVITIES? 
Using a temporal lens human activities can be broadly grouped into three classes: 

 Durative - activities that contain recurrent or cyclic data or data appearing to occur at intervals (e.g 

walking, running, standing still, rowing, cycling and grooming a horse) and which occur over a 

longer time. 

 Punctual - short, specific activities that may not contain periodic data (e.g. Pick up a cup, get on a 

horse, bowl, kick or hit a ball). 

 Complex or Meta - An activity that is composed of two or more Durative and/or Punctual activities 

(e.g. Cooking, Riding). 
 
These definitions were proposed in D. P. L. Hunt, Parry, and Schliebs (2014).  At this stage of research, 

classifying complex or meta activities is generally not attempted because of complexity. 

The daily activities that were a focus of early on-body, sensor researchers such as walking, running, 

standing, ascending stairs, descending stairs and the like are durative activities as they relate to continuing, 

cyclic action. (Smith, 1999). The common classification approach for these types of activities is to use the 

Quantize, Model and Classify pipeline According to Preece et al. (2009, pp. 3), in almost all cases the sensor 

signal is divided into small time segment “windows” and these are considered sequentially (Quantise). 

Features are calculated/derived from each window so as to characterise the signal (Model), and then the 

features are used as input into a classification algorithm (Classify).  

Activities can be said to have a start phase, a central phase and an end phase.  With durative activities the 

central phase is repetitive and looking at walking, for example, it could be said that a person starts walking, 

then they are walking for some period and finally they will stop walking at some point. By and large, the 

features that are extracted from the sensor signals that are used to classify durative activities come from the 

longer, repetitive, central phase. 

Punctual activities, such as picking up a cup, opening a door and mounting a horse are usually very short 

compared with durative activities. These punctual activities do not contain a repetitive cycle and their short 

duration means that using features from all three phases is important. In addition, many punctual activities are 

of variable length. This temporal variability means that using fixed width windows to extract features tends not 

to be very successful. In this area Junker, Lukowicz, and Troster (2004, pp. 1) states: 
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"With a scheme that partitions e.g. the signal into segments of predefined length, it 

is very likely to miss the exact beginning and end of the relevant movements which 

is critical particularly for activities of short duration". 

 

Spectral type quantisation techniques that are often successfully used on cyclic durative activities are 

unlikely to be successful with punctual activities as, by definition, punctual activities are not cyclic in nature. 

This is supported by researchers such as Logan, Healey, Philipose, Tapia, and Intille (2007) who report much 

lower classification rates when classifying punctual activities using spectral techniques. 

Something different is required to successfully classify punctual activities. Some researchers such as 

Amft, Lombriser, Stiefmeier, and Troster (2007); Junker, Amft, Lukowicz, and Troster (2008) keep the 

methods developed for durative activities but supplement the sensor signals with proximity sensors, sound 

sensors and other data to try to improve classification success. Our approach has been to modify the 

classification technique by using recurrent neural networks (Reservoir Computing techniques) in the form of 

Liquid State Machines (Schliebs & Hunt, 2012; Schliebs et al., 2013) and Echo State Networks (D. P. Hunt & 

Parry, 2015; D. P. L. Hunt et al., 2014). Reservoir computing methods have two advantages when classifying 

punctual activities. Firstly they do not require that the sensor signal be pre-segmented into fixed windows for 

feature extraction as they are capable of using the unsegmented raw sensor signals or features calculated on the 

fly such as running means.  This means that no additional special techniques are required to cater for variable 

length activities. Potentially an activity that takes two seconds to complete can be classified alongside the 

same activity that took four seconds to complete. Secondly, the ability of Reservoir methods to utilise the 

temporal sequence of the sensor signals enables more reliable classification of punctual activities because the 

temporal sequence of these short activities tends to be highly descriptive. This is highlighted by the success 

that other researchers have had using these methods in classifiers with other temporally significant data such as 

natural language (Goodman & Ventura, 2006; Jaeger, Lukosevicius, Popovici, & Siewert, 2007). 

 

4. BRINGING IT ALL TOGETHER 
Technology has been used to monitor and provide information to coaches and athletes that assist with training 

in all three areas of coaching feedback described in the introduction. Within the area of technique feedback, 

technology has been used to record and compare current technique with previous performances, with 

opponents and/or with theoretical ideals. Traditionally the technology used has provided after-the-event 

feedback. Some well known examples of technology that provides after-the-event feedback are video products 

such as Silicon Coach and Expert Vision Analysis (Liebermann et al., 2002). Such systems often require active 

guidance from a coach, especially when used by novice athletes (Liebermann et al., 2002). Feedback can be 

informal advice "keep your elbow down", visual comparisons that show a more optimal technique alongside 

the recorded performance or "technology supplemented" where, for example, a more optimal throwing angle is 

calculated and superimposed over the top of the recorded performance. 

With the availability of small, low powered MEMS inertial and other sensors, powerful but low power 

draw computer chips and advances in battery miniaturisation and performance, small, wearable devices have 

been developed that can record data for after-the-event feedback or, more recently, to record, analyse and 

provide real-time feedback as the activity is being performed. 

Within the realm of technique coaching, after-the-event feedback is useful but requires an athlete to 

remember to modify her technique when next performing the particular action. Sometimes the athlete’s current 

technique has been habituated and so coaching requests to "remember to do it differently next time" are not 

always immediately effective. When the athlete is highly motivated and does remember then this form of 

feedback can sometimes take months to change behaviour. Reducing the time between performing an activity 

and receiving feedback about that activity can speed up changes to technique, especially if the feedback is 

consistently provided every time the athlete performs the activity. 

Most off-body, video coaching products for technique training require specially set up environments in 

order to function correctly. This means that if an athlete trains outside of that special environment they will not 

get the feedback needed and so potentially the rate of change will be slowed. This requirement to train within a 

special environment can add cost to training and make training less convenient. 

Wearable devices and devices embedded within sports equipment and clothing are able to be used in most 

environments and so have the potential to provide more consistent feedback on technique, however, most of 

these devices to date have concentrated on quantifying sports activity. Probably the best known are the wrist 

devices such as fitbit that record data (quantities) such as time spent being active, number of steps, distance 

walked/run, elevations encountered and sometime physiological data such as heart rate. Other, more 
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specialised devices include the Zepp sensor that records swing statistics for Baseball, Softball, Golf and 

Tennis; Some, more specialised devices do provide limited feedback, such as audible warnings if heart rate is 

above a predefined level (physical conditioning), audible or haptic metronomes to synchronise cadence 

(technique) or pressure sensitive golf gloves that provide an audible warning when grip is too tight 

(technique), see figure 1 for an example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A pressure sensing golf glove designed to provide real-time feedback on club grip pressure. 

Copyright by H Hellström/Hippson.se (2008) Retrieved from 

http://www.hippson.se/artikelarkivet/ryttartraning/din-nya-tranare-en-dator.htm?_qStr=doug, Reproduced with 

permission of Hippson.se. 

 

Most off-body, video coaching products for technique training require specially set up environments in 

order to function correctly. This means that if an athlete trains outside of that special environment they will not 

get the feedback needed and so potentially the rate of change will be slowed. This requirement to train within a 

special environment can add cost to training and make training less convenient. 

A number of these wearable devices that provide real-time feedback on technique exist but they are 

invariably single activity devices and, in addition, they also invariably require manual intervention to turn 

them on and sometimes more importantly, to turn them off so that the feedback is not disruptive when not 

performing the particular activity that they are designed for. Potential problems focussing on what is important 

may also arise if athletes wear two or more different feedback devices at the same time and they are triggered 

at the same or similar instants. Imagine the confusion for an athlete that is perhaps wearing five or six different 

devices and they all start lighting up like a Christmas tree. Of course, a good human coach knows not to 

provide too much feedback about different things at the same time but stand-alone feedback devices have no 

collective intelligence. One way to resolve the issues of multiple unconnected devices is to consolidate them 

into an integrated wearable riding coach and this is the ultimate end goal of the work that we are currently 

doing at AUT University. 
 
4. WORKING TO REALISE THE CONCEPT 
We identified a number of components that needed to be built before an integrated, wearable riding coach 

could be realised and a decision was made to work on the classifier components first. Within the requirements 

for the classifiers a gap in the research was identified for a reliable punctual activity classifier. Recent work 

has been done to develop a suitable classifier using an Echo State Network.  Encouraging early results have 

been published including work on the most difficult area for activity classification, classifying unscripted real-

http://www.hippson.se/artikelarkivet/ryttartraning/din-nya-tranare-en-dator.htm?_qStr=doug
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world activities in actual riding situations. The most recent publication from this work was D. P. Hunt and 

Parry (2015) and future publications are planned. 

5. CONCLUSIONS 
It is now feasible to contemplate creating an integrated, electronic wearable coach that provides real-time 

feedback on technique for sports coaching and other situations. One of the key components of such a wearable 

coach would be a classifier or series of classifiers. A prior gap in the research associated with activity 

classifiers has been a reliable classifier for punctual activities. One possible solution to this gap is to use 

Reservoir Computing methods. Other potential classifier engines may also be successful, however, Reservoir 

methods in the form of an Echo State Network has been shown to work reliably with one particular punctual 

activity taken from Equestrian sport. 
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Abstract 
There are a vast range of methods used to create team ratings in sports. For example, Team Lodeings have 

been proven to give a good relative measure of team performance. Previous work has successfully applied 

these metrics to provincial rugby teams in New Zealand within the same division, but has not accounted for 

conference or division-type competition structures. In competitions with different conferences and divisions, 

such as the National Basketball Association (NBA) or New Zealand Rugby National Provincial Championship 

(NPC), there is usually varying ability of teams within each conference or division. 

     In this work, we use general linear models and smoothing to calibrate team ratings across groups. The NBA 

and National Football League (NFL) are used to highlight the limitations of Team Lodeings when comparing 

teams across divisions. By treating games played between teams within their own conference as one group, 

and those games between teams in different conferences as an interaction group, a general linear model is used 

to describe the relationship between these groups and to calibrate team ratings. For the NBA, the western 

conference has recently been stronger than the eastern, and our approach allows this unevenness to be 

incorporated into the competition-wide ratings. 

     We finally apply our methodology to the NPC and analyse the three divisions from 1976-2008. We are able 

to calibrate the ratings from teams between divisions using the general linear model approach. By comparing 

teams across divisions, we show the effect that professionalism has had on provincial rugby. 
 

Keywords: Team ratings, calibration, general linear models 
 

1. INTRODUCTION 

Analytical techniques provide an excellent framework for comparing the relative merits between different 

teams.  There are numerous publications describing the development and improvement of sport ratings 

systems. Stefani (2011) provides a detailed review of methods for officially recognised international sports 

rating systems and is an excellent resource for evaluating the strengths and weaknesses of various systems. 

     Bracewell, Forbes, Jowett, and Kitson (2009) introduced a method for quantifying the relative 

performances of teams, which used score ratios rather than scores or differences.  This method, called Team 

Lodeings, enables meaningful comparisons of team ability, even if the teams have not played each other. 

However the framework does not account for differences between divisions. If there are no differences in the 

overall performance of teams between divisions, then intra-group Team Lodeings can be compared 

immediately. However, performance differences between divisions naturally arise in competitions like the 

New Zealand rugby domestic competition, NPC, or the English Premier League, where teams are promoted or 

relegated based on their season performance. In North American sports, differences between divisions occur 

because of asymmetric scheduling.  This means that it is necessary to create a calibration framework for Team 

Lodeings in order to compare team ratings in multi-division competitions. This paper provides a framework 

for calibrating intra-group Team Lodeings so that overall ability differences between groups can be quantified. 

 

2. METHODS 

TEAM LODEINGS 

We begin by providing an overview of the Team Lodeings ratings engine (Bracewell et. al., 2009).  The Team 

Lodeings rating, LT, for a team T, is given by: 
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where nh and na are the respective number of home and away games played by the T
th
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     The ratio of victory for team i against team j is given by: 
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where si and sj are the normalized points scored by each team. The ratio of victory helps ensure ratings do not 

converge towards 0.5, as is the case in high scoring games such as basketball. Team Lodeings were originally 

developed for Rugby Union (Bracewell, et. al., 2009), where the use of ratio of victory scores provided a well 

distributed sample of {q,p}. Here we use Rugby scores to standardize points scored, so that a variety of sports 

can be considered within this framework (with µ= 25, σ = 6.72), so that the {q,p} distributions are 

comparable.  While we have chosen to use the ratings algorithm described above in this paper, an area for 

future research is the assessment of other algorithms. 

     Team Lodeings are calculated for a specified time frame, t, where t ≥ nh0 + na0, with nh0, na0 ≥ 1, so that 

Team Lodeings can be calculated. This allows for team performance to be dynamically calculated across a 

season so changes in performance can be quantified. This is useful for match prediction. 

     Higher Team Lodeings are associated with better performing teams, with 0 ≤ LT ≤ 1 ensured by the use of 

score ratios. Using score ratios leads to a well-defined LT, whereas score difference can lead to unbounded LT. 

Score ratios also lead to a fairer assessment of the performance of both teams in a given match. Consider two 

rugby results, 13-3, and 40-30. Both have a score difference of 10. However the second result reflects a closer 

game, which is reflected in the ratios of 0.81 and 0.57.   

 

CALIBRATING TEAM LODEINGS ACROSS GROUPS 

Our framework for calibrating Team Lodeings to account for division differences relies on having a suitable 

calibration group, or interaction group. This interaction group contains all matches played between teams from 

the different divisions we wish to compare. For example, for a competition with two divisions, we construct 3 

distinct groups. Group A and Group B consist of all matches played exclusively between teams within division 

1 and division 2 respectively, and Group C is the interaction group containing all matches between teams from 

division 1 and 2.  

     To create overall Team Lodeings, we use the following framework for calibration. First, we create 

calibration parameters: 

BAP BBAAji     ,
   (3) 

where µi is the mean adjustment to the Team Lodeings for division i, σi is the multiplicative factor (standard 

deviation) to transform the Team Lodeings in division i, A and B represent the group, and Pi,j is the score 

proportion in the match between teams i and j from groups A and B (Eq. (2)). Eq. (3) relates to matches within 

the interaction group only. 

     In practice, we fit these calibration parameters using the following general linear model: 

jBBBBiAAAABijAji LGGLGGGPGP      ,,
 (4) 

where Gi are indicator variables for groups A or B. The model estimates are mapped to the intra-group Team 

Lodeings shift parameters by:  

AA       (5) 

AA       (6) 

 

The calibrated Team Lodeings for team T in group A are then given by: 

         
A

A

T
T

L
L 


      (7) 

where TL is the raw intra-group Team Lodeings, and TL is the new calibrated Team Lodeings. For groups 

with relatively different levels of abilities, the recalibrated Team Lodeings will help factor for those 

differences that would otherwise be unaccounted for. 

 

3. RESULTS 

NATIONAL BASKETBALL ASSOCIATION: THE INFLUENCE OF DIVISIONS 

We use the National Basketball Association (NBA) to provide a test of our framework for unbalanced leagues. 

The NBA is divided into Eastern and Western conferences with 15 teams in each. Within each conference 

there are three divisions. Each team plays 82 games, including 4 games against every other team in their own 

division. Teams face opponents from the other two divisions within the same conference either three or four 

times, and will play every team in the other conference twice. This asymmetrical structure means the strength 

of schedule will vary between teams, and calibrating team ratings will be important.   
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     We consider all regular season NBA games played in the 2007-08 season. Given that the NBA is naturally 

split into two conferences, we define group 1 to include all matches within the Eastern conference, group 2 to 

include all matches within the Western conference, and the interaction group to consist of all matches between 

opponents from the Eastern and Western conferences.  

     To demonstrate the effect of conferences in the NBA, we calculate the Team Lodeings for each team from 

the Eastern conference group, Western conference group, and interaction group, and compare these with an 

Overall Team Lodeings measure, constructed without defining any conference sub-groupings. Figure 1 shows 

the correlation between grouped Team Lodeings and overall Team Lodeings for each NBA team at the end of 

the 2007-2008 season. There is a strong correlation for all groups (Eastern: r = 0.96, p < 0.0001, Western: r = 

0.95, p < 0.0001, Interaction: r = 0.87, p < 0.0001). There is an equally strong correlation between the group 

Team Lodeings and final winning percentage (Eastern: r = 0.90, p < 0.0001, Western: r = 0.90, p < 0.0001, 

Interaction: r = 0.89, p < 0.0001). These correlations show that each individual group is able to produce Team 

Lodeings that are representative of the actual season. 

 
Figure 1: The relationship between Grouped NBA Team Lodeings and Overall NBA Team Lodeings for the 

2007-2008 Season. 

 

     Although the Team Lodeings within each group are representative of the overall Team Lodeings, there are 

some important differences. The top rated team belongs to the Eastern Conference (Boston Celtics), where 

their own conference Team Lodeing is higher than that in the interaction group. Similarly the Eastern 

conference had the worst-rated team based on games played against their own conference (Miami Heat). 

Figure 1 immediately suggests the Eastern conference was less competitive than the Western conference in 

2007-2008. 

     To quantify the differences between the groups, we use a general linear model with overall Team Lodeings 

as the dependent variable. Generalizing Eq. (4), we construct a model for the overall Team Lodeings of the 

form: 

      
i

,   TGiiiiT LGGL     (8) 

where i is an index for the Eastern, Western and interaction groups, and LG,T is the intra-group Team Lodeings 

for team T, and Gi is a group indicator variable.  We find the model coefficients are given by: 

0.03   0.02,   0.05,   IWE     (9) 

0.93   0.97,   0.86,   IWE     (10) 

where E, W, and I represent the Eastern, Western and Interaction group parameters respectively. The model 

estimates highlight the differences in ability between each group. The estimate for the Eastern conference shift 

(µ) is highest showing this conference did not perform as well as the Western. Similarly, the multiplicative 

term (σ) is smallest for the Eastern Conference group showing there is a larger spread (unevenness in 

competition) in this conference.   
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NATIONAL FOOTBALL LEAGUE: A TEST OF CALIBRATION 

The above analysis for the NBA showed how general linear modelling can be used to quantify the differences 

between divisions. However the correlation between each grouping’s Team Lodeing and the overall Team 

Lodeing was very strong, which amounts to saying uncalibrated Team Lodeings work well when conferences 

are even. Here we consider the National Football League as an example to show how conference calibration 

performs across divisions with uneven performance. 

     The NFL has a similar conference system to the NBA, with the National Football Conference (NFC) and 

American Football Conference (AFC) containing 16 teams and 4 divisions. Teams play 16 games, playing 

every other team in their division twice, every team in one other division within their own conference once, 

and every team in one other division in the other conference once. Finally teams play two games against other 

teams in their own conference that finished in the same position in their own divisions as themselves in the 

previous season, not counting those in the division they were already scheduled to play. 

     In our study of the NFL, we consider all games played in the 2006-2007, 2007-2008, and 2008-2009 

seasons (48 games per team).  We find using the natural NFC and AFC groupings results in little difference 

between the Team Lodeings within each group, with a strong correlation between the overall Team Lodeings 

and group Team Lodeings (r = 0.78, p < 0.0001). To validate the calibrated Team Lodeings framework for 

groupings of differing ability, we engineer two groups based on ability. We ranked teams over their three 

season record and retained the top 8 teams in group 1, and assigned the bottom 8 teams to group 2. Figure 2 

shows the correlation between overall Team Lodeings and the raw Intra-Division Ratings. Despite the 

differing ability between the two groups as shown in the Overall Team Lodeings, we find little distinction 

between the Intra-Division ratings for each group.  

 
Figure 2: The relationship between Grouped NFL Team Lodeings and  

Overall NFL Team Lodeings for the 2006-2009 seasons. 

 

     In order to calibrate the intra-division ratings, we use the result proportion in a general linear model as in 

Eq (4). From games in the interaction group, we construct Pi,j for each team from group 1 and 2, and use each 

team’s raw intra-group Team Lodeings to fit the model given by Eq. (4). The model estimates are then used to 

calibrate the intra-division Lodeings via Eq (7). Figure 3 shows the correlation between the calibrated intra-

division Team Lodeings and the Overall Team Lodeings. We now observe a clear separation between the two 

groups, and the calibrated ratings have a significant correlation with the overall ratings (r = 0.68, p < 0.0001).  

 

NATIONAL PROVINCIAL CHAMPIONSHIP: APPLICATION OF THE CALIBRATION FRAMEWORK 

We finally apply the calibrated Team Lodeings framework to the New Zealand National Provincial Rugby 

Championship (NPC).  We calculate calibrated Team Lodeings for all teams from the inception of the NPC in 

1976, until 2008. While the specific structure of the NPC has changed over the years, the general structure 

consists of three groups or divisions. In the inaugural competition, there was a top division consisting of 
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provincial teams from throughout New Zealand, and a further two divisions based on North Island and South 

Island teams respectively. The format of the competition changed in 1986, when three truly national divisions 

were created. This corresponded to the emergence of clear differences in abilities of the three divisions. 

 

 
Figure 3: The relationship between the Calibrated Grouped NFL Team Lodeings 

 and Overall NFL Team Lodeings for the 2006-2009 seasons. 

 

     In Figure 4 we present the calibrated ratings for three different teams – Auckland, Taranaki, and Wairarapa 

Bush. We choose to focus on these three sides for a number of reasons. Auckland is historically the most 

successful province, and has played in the top division in all seasons considered. Taranaki has been an 

established first division side since the mid 1990’s, but prior to this had frequently moved between divisions. 

Finally, Wairarapa-Bush is one of the few sides to have played in all three divisions, and gives a good picture 

of how smaller rural-based unions have performed. The time series in Figure 4 can be interpreted by 

considering three distinct time periods: 

     i: The birth of the NPC – 1976 to 1985. The first 10 years of the competition are those where the three 

teams have the most even ratings. This aligns with the fact that division 2 and 3 were separated by geography, 

rather than ability. Wairarapa-Bush has its best period of ratings from 1981, corresponding to its promotion to 

the first division. Taranaki were relegated to the second division that same year. The general similarity 

between the ratings of Taranaki and Wairarapa-Bush shows the evenness between divisions 1 and 2 in the 

early years of the NPC. Auckland generally has a slightly higher rating until 1984, where their rating jumped 

after winning the division 1 competition. 

     ii: Restructuring and shift towards professionalism – 1986 to 1995. In this period, New Zealand provincial 

rugby was dominated by Auckland. They won 7 out of the 10 division 1 championships, including four in a 

row from 1987 – 1990, explaining their high Team Lodeings. Taranaki spent this period switching to and from 

divisions 1 and 2, where their promotion and relegation correlates with the oscillations in their Team Lodeings. 

Wairarapa-Bush were a regular mid-table second division team from 1988-1995. Over this period, an increase 

in the unevenness between divisions 1 and 2 is apparent. This corresponds to the restructuring of the 

competition to three national divisions driven by ability.  

     iii: Professional era – 1996 onwards. 1996 was the first year of truly professional rugby with the creation 

of the Super 12 competition. In this era, we see evidence of a strong drop off in the performance of rural 

provinces. Wairarapa-Bush were relegated to division 3 in 1998, where their rating dropped dramatically. In 

2005 they won division 3, where we see their rating trending upward. However this time corresponds to the 

greatest gap between Wairarapa-Bush’s rating, and those of Auckland and Taranaki, who were consistently 

performing division 1 sides. Wairarapa-Bush had a negative rating in 2004, highlighting the major differences 

that have developed between divisions in the NPC. This is a direct impact of professionalism where it is 

beneficial for the top players to go to the major regions of New Zealand.  
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Figure 4: Calibrated NPC Team Lodeings for Auckland, Taranaki and Wairarapa Bush from 1976 – 2008. 

 

4. CONCLUSIONS 

We have presented a framework to extend Team Lodeings by calibrating intra-division Team Lodeings within 

a multi-division competition to account for differences between groups. We tested the approach on the NBA, 

highlighting strength of schedule effects, with the Western Conference Team Lodeings having the largest 

adjustment shift. By considering the NFL and NPC, we have shown that our calibrated Team Lodeings 

framework is able to compensate for ability differences between divisions. This is a generic framework, and 

can be applied to any multi-group competition in which intra-group Team Lodeings can be determined 

provided there is an interaction group to enable calibration. 
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Abstract 
For many years computerised cognitive testing has been integrated into elite sports worldwide. These tests have 
been used primarily for conducting baseline and after-injury assessments to aid in return to play decisions following 
a concussion. In this presentation, recent technological advances and improvements in the cognitive tests themselves 
will be discussed, particularly how these advances have enhanced the accessibility and usability of cognitive 
assessments for athletes and medical staff. The availability of online testing has also made it possible for baseline 
tests to be completed in an unsupervised setting (e.g., at home), which has increased accessibility for amateur 
athletes where team medical staff are not readily available to complete in person assessments. Despite several 
advantages, unsupervised testing poses a series of challenges in terms of data quality and comparability across 
repeat assessments given variations in the testing environment (and potential distractions) as well as differences in 
the level of understanding of the test requirements. Given this, the availability of training modules that ensure an 
athlete has sufficient understanding of the test requirements prior to the assessment is essential. Training modules 
also make cognitive tests more accessible for younger athletes, particularly children and adolescents who are playing 
contact sports where the risk of concussion remains. Aside from concussion testing, the potential applications of 
cognitive testing in the sporting context will be discussed, with a focus on how these tests can be used to facilitate 
player and coaching decisions both during training and in-play. 
 
Keywords: Cognitive Testing, Concussion, Coaching Decisions 

1. INTRODUCTION 
Concussions occur in a broad range of contact sports worldwide, including American and Australian Rules football, 
rugby league, rugby union, boxing, hockey, lacrosse and basketball, and less commonly in sports such as soccer and 
netball. Given the frequency of falls, concussions are also frequent in sports such as horse riding and gymnastics. 
The incidence of concussion has been well known for several decades, with concussive assessments being 
undertaken both on the sidelines during matches and in the weeks subsequent to a match where a concussive event 
has occurred (or was suspected to have occurred). 

According to the Sport Concussion Assessment Tool – 3rd Edition (SCAT3), “a concussion is a 
disturbance in brain function caused by a direct or indirect force to the head. It results in a variety of non-specific 
signs and/or symptoms and most often does not involve loss of consciousness. Concussion should be suspected in 
the presence of any one or more of the following: symptoms (e.g., headache), physical signs (e.g., unsteadiness), 
impaired brain function (e.g. confusion) or abnormal behaviour (e.g., change in personality).” (Concussion in Sport 
Group, 2013). There is general agreement that athletes should not be returned to play while injured and accordingly, 
many sports governing bodies have now developed concussion management programs with the aim of increasing 
awareness and improving management. 

In recent years, sports governing bodies have become increasingly cautious in the manner that concussion 
is diagnosed and treated, with return to play decisions being more conservative as a result. This is particularly the 
case where an athlete has sustained multiple head injuries, given the association between multiple concussions and 
the increased risk of cumulative cognitive deterioration (i.e., the second impact syndrome) and mental illnesses such 
as depression (Makdissi et al., 2001; Makdissi, Darby, Maruff, Ugoni, Brukner, & McCrory, 2010). In rare cases, 
players have retired prematurely when multiple concussions of a severe nature has been sustained. In March this 
year, AFL player Justin Clarke, who had played 56 games over a four year period for the Brisbane Lions, retired at 
age 22 due to ongoing cognitive impairments endured following several serious concussions. Due to the risks 



 

Pa
ge
57
 

associated with suffering further head trauma over the course of his career, it was recommended by Justin’s treating 
team that he cease playing contact sport (Gleeson, 2016). 

The emphasis on protecting players and minimising the incidence of concussions has had a flow-on effect to the 
assessment of symptoms and the manner in which the nature and severity of concussions are evaluated. There are a 
range of assessment tools available to assist club doctors at the elite level to assess concussion immediately 
following an incident during a match (Makdissi et al., 2001). Whilst some of these measures are conventional pencil 
and paper assessments, others are computerised neuropsychological assessments that enable a broad set of core 
cognitive domains to be evaluated in a short amount of time, usually within 10 to 15 minutes (Collie et al., 2003; 
Collie, Makdissi, Maruff, Bennell & McCrory, 2006). Decisions about the presence, magnitude and time course of 
concussion are limited when based on self-report symptoms alone. There is now strong evidence that the addition of 
objective assessments of CNS function such as cognition and balance improves the identification of concussion, 
with cognition returning to pre-injury levels after symptoms have resolved. 

In this paper, current approaches to assessing cognition in concussion are considered, with an emphasis on 
computerised tools that can be utilised to evaluate cognition. Recent technological advances and improvements in 
cognitive tests are considered, particularly how these advances have enhanced the accessibility and usability of 
cognitive assessments for athletes and medical staff. The challenges associated with cognitive testing in elite and 
amateur sport are discussed, including methods that can be used to ensure a valid assessment of cognitive 
performance is being obtained. Implications for increasing accessibility to assessment tools at amateur levels are 
also considered, given the limited access to club doctors at the community sporting level. 
 
2. ASSESSMENT OF CONCUSSIVE SYMPTOMS 
Many assessment tools are available to evaluate concussive symptoms. Importantly, it is not recommended that a 
single assessment tool be used to make or exclude a concussion diagnosis, given the diagnosis of a concussion is a 
clinical judgment that should be made by a medical professional. In many cases, a medical practitioner will use a 
number of available tests in addition to a clinical interview to provide convergent evidence as to whether an athlete 
has sustained a concussion, and whether the athlete remains symptomatic and is ready to return to play (Makdissi et 
al., 2010). 

Sport Concussion Assessment Tool – 3rd Edition (SCAT3) 
The SCAT3 is perhaps the most widely used assessment of concussion. This is a standardized assessment to 
evaluate concussion in athletes as young as 13 years of age. An alternative form, the Child SCAT3 is available for 
children aged 12 years and younger (Concussion in Sport Group, 2013). The SCAT3 assessment contains a general 
background which includes demographic information and personal details, as well as four questions that address the 
athlete’s recent concussion history. A symptom evaluation checklist includes 22 common symptoms that an athlete 
may experience in the event of a concussion. The SCAT3 contains a cognitive assessment that evaluates cognitive 
domains such as orientation, memory (both immediate and delayed recall) and concentration. A neck, balance and 
coordination examination also form part of the SCAT3 assessment (Concussion in Sport Group, 2013). This tool is 
relatively simple to score and can be used to provide an indication of concussive symptoms immediately after a 
suspected head injury or in the hours, days or weeks following the event. 

Cogstate Brief Battery (CBB) 
The SCAT3 assessment is often used in conjunction with a computerised cognitive screening assessment. Several 
brief computerised assessments are available, with some of the more common assessments being the Immediate 
Post-Concussion Assessment and Cognitive Testing (ImPACT) and the Cogstate Brief Battery (CBB) (Covassin et 
al., 2009; Cromer et al., 2015). The CBB is a brief cognitive screening test battery that requires approximately 10-15 
minutes to complete. The assessment consists of four tests that measure the speed and accuracy of psychomotor 
function (Detection task), attention (Identification task), learning (One Card Learning task) and working memory 
(One Back task). The validity of the CBB has been established in multiple studies of different healthy and clinical 
groups, including many studies on athletes of all ages (Collie et al., 2006; Eckner, Kutcher, & Richardson, 2010). 
The CBB has been shown to have high sensitivity to change, excellent specificity and sensitivity to cognitive 
impairment, high test/retest reliability as well as resistance to practice effects (Collie et al., 2003; Louey et al., 
2014). Stimuli used in the CBB consist of cards from a traditional French card deck (refer to Figure 1), and therefore 



 

Pa
ge
58
 

performance is not influenced by the language or cultural background of the athlete and therefore it can be 
administered validly in children, adults and older adults. 

 

 

Figure 1: Screenshot of the Identification test in the Cogstate Brief Battery (CBB). 

At the beginning of each CBB test, instructions are presented on the screen. This is followed by a demonstration in 
which athletes practice the test, thus providing an opportunity to become familiar with the rules. Once the 
demonstration is complete, the test begins. On each trial of each test, a single playing card stimulus is presented in 
the center of the screen. At the presentation of each playing card stimulus, individuals are required to respond either 
“YES” or “NO”. The four tests contained within the CBB, the paradigm, main cognitive domain that each test 
measures and the primary outcome of each test are listed in the Table 1. 

Table 1: Summary of tests in the Cogstate Brief Battery (CBB). 

Test Name Paradigm Cognitive Domain Primary Outcome 

Detection Simple Reaction Time Psychomotor Function 
Speed of performance (mean of the 
log10 transformed reaction times for 
correct responses) 

Identification Choice Reaction Time Attention 
Speed of performance (mean of the 
log10 transformed reaction times for 
correct responses) 

One Back N-Back Working Memory 
Speed of performance (mean of the 
log10 transformed reaction times for 
correct responses) 

One Card Learning Pattern Separation Visual Learning Accuracy of performance (arcsine 
square root proportion correct) 

 

In leagues such as the AFL and National Rugby League (NRL), athletes complete a CBB assessment at the 
beginning of each season to provide a baseline level of cognitive function on each of the four tests in the battery. If 
the athlete sustains a head injury during the season, he or she then retakes the battery, whereby performance on each 
test is compared with the baseline assessment. Given after-injury performance is compared with baseline 
performance, it is critical that the athlete obtains a valid baseline assessment that accurately represents their level of 
cognitive function at the time of the test. However, given after-injury tests will typically be used to provide 
convergent evidence in return to play decisions, there is an incentive for athletes to feign poor performance on their 
baseline assessment, as an after-injury assessment will be less likely to identify cognitive decline if performance was 
poor at baseline. As such, the CBB has a series of in-built completion and data integrity checks that ensure each test 
has been completed and that performance was at the level expected for a healthy athlete who was not impaired by a 
lack of motivation, poor concentration or other potential distractions. 
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In analysing results of the CBB during after-injury assessments, meaningful decline is indicated if 
performance on one or more tests in the battery has declined by greater than 1.65 standard deviations when 
compared with the most recent baseline assessment (as measured by a Reliable Change Index). If cognitive decline 
has occurred, a retest is recommended and the CBB is typically repeated within one to seven days. It is not 
uncommon for the CBB to be repeated on several occasions in the week(s) following a concussion, refer to Figure 2 
for an example. 

 
Figure 2: Example of a change score plot displaying change in cognitive performance over multiple assessments. 

 
In addition to measuring cognitive decline relative to baseline, the CBB also provides a comparison to age-matched 
normative data on each test in the battery, refer to Figure 3. Performance on each test is represented as a 
standardized T-Score with a mean of 100 and a standard deviation of 10. If performance is more than two standard 
deviations below the normative mean for the athlete’s age (e.g., <80), cognition is considered to be impaired, in 
which case a retest is recommended. 

 
Figure 3: Normative comparison plot displaying performance in the Normal, Borderline or Abnormal ranges. 

3. AFTER-INJURY COMPARISONS TO BASELINE AND NORMATIVE ASSESSMENTS 
The baseline approach to cognitive testing has been demonstrated as a well-established method to evaluating 
cognitive decline or impairment following a concussion (Louey et al., 2014). An alternative approach to measuring 
after-injury cognitive performance is to simply compare performance to an age-matched normative sample and 
determine whether performance is outside of the normal range (termed the normative method). The underlying 
assumption of the normative method is that elite athletes represent healthy adults who theoretically fit within the 
healthy distribution of cognitive performance. One shortcoming of this approach is that it is possible, and likely 
given the large sample of elite athletes playing professional sport, that a proportion of the athletes fall above or 
below the normal range at baseline. However, if an athletes level of cognitive function is below normal at baseline, 
after-injury performance will also be below the normal range (and likely lower than their optimal performance) 
irrespective of whether the athlete is symptomatic as a result of a concussion. As such, the results of the test will not 
accurately inform a return to play decision. It is also possible that an athlete’s baseline cognitive performance is 
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higher than the normative average, and therefore during an after-injury assessment, performance may merely decline 
into the normal range. Therefore, if a baseline assessment is not available, and a medical officer only has a 
normative comparison available, it will not be possible to detect that cognition has declined relative to pre-injury 
levels. 

Louey and colleagues (2014) compared the sensitivity and specificity of the baseline and normative data 
methods on the CBB among a sample of 260 non-injured and 29 recently concussed athletes. Although both 
methods maintained high correct classification rates and high specificity, the baseline method had higher sensitivity 
than comparing after-injury performance with normative data. Furthermore, 27.6% of concussed athletes classified 
as impaired using the baseline method where classified as unimpaired when the normative method was applied. 

It is not always possible to obtain a baseline test on each athlete at the beginning of the season. This is 
particularly the case for amateur athletes where resources are not available to baseline all players. In cases where a 
baseline assessment is not available, an after-injury assessment can provide an indicator of cognitive performance 
that would otherwise not be available. Whilst a return to play decision cannot be made on the basis of the 
assessment, the findings can be used to provide evidence of whether any adverse effects of the head trauma 
sustained during a match remain present. 

 
4. INDIVIDUAL, GROUP AND UNSUPERVISED TESTING 
Given technological advances in recent years, it is now possible for a computerised test battery such as the CBB to 
be administered online, in which case an assessment can be completed in alternative testing environments that are 
more convenient for the athlete (e.g., at home). This is relevant to baseline testing in particular given the benefit of 
all players completing a baseline test, and clubs (particularly at non-elite levels) not having resources available to 
provide a sound testing environment, or adequate supervision, for baseline assessments. Despite the available 
technology for group-based or unsupervised testing, questions have been raised regarding the validity of assessments 
not completed in a traditional supervised context, and whether data collected from group-based or unsupervised tests 
is equivalent to that collected under individual supervision. Cromer and colleagues (2015) completed a two part 
study where the CBB was administered to undergraduate students across (i) individual supervised versus group 
supervised conditions, and (ii) individual supervised versus unsupervised conditions. No significant differences were 
found between supervised assessments completed under individual or group supervision. Furthermore, performance 
gathered in the unsupervised condition were not significantly different to those the individual supervised condition. 

These findings suggest that as technology continues to evolve, consideration could be given to athletes 
completing baseline assessments in alternate settings that place less burden on club resources. Whilst one of these 
options in group-based testing where a single supervisor oversees baseline assessments for a group of athletes at a 
time, another option is unsupervised testing. In the event that an athlete is concussed, a more formal process of 
supervised testing would be undertaken for the after-injury assessments, with results being interpreted in the context 
of other formal assessments such as the SCAT3. 

Challenges associated with the testing environment also extend to the age of the athletes being tested. For 
adult athletes, a simple computerised assessment can be completed unsupervised with relative ease, provided the test 
has inbuilt training modules that provide adequate opportunity for understanding and skill acquisition on the tests 
being undertaken. Additional validity checks are also needed to evaluate whether the athlete was adhering to the test 
rules, which enables the medical officer to determine that the completed test was a valid measure of cognition. For 
younger athletes however, particularly children and adolescents, greater care needs to be taken when considering 
group-based or unsupervised testing. During the initial stages of testing, particularly during a first attempt at a 
battery, children may need feedback from a supervisor on the rules of a test. Whilst this tends to be a trained test 
supervisor in a club environment currently, this may extend to coaches or even parents or caregivers if baseline 
assessments are completed at home in future. In any case, adequate training must be provided to all supervisors to 
ensure the level of assistance provided is consistent across athletes. 

5. OTHER APPLICATIONS OF COGNITIVE TESTING IN SPORT 
There are a range of applications of cognitive testing in sport that extend beyond return to injury decisions after 
concussion. Cognitive tests measure a variety of domains important in elite sport, including but not limited to, 
processing speed, sustained and divided attention, concentration, working memory, and executive functions such as 
planning and decision making. These tests are often used to evaluate the success of interventions that target 
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improved cognitive function in typical game scenarios and highly pressurised situations. For example, an AFL 
player’s approach to the final quarter in a game where their team is leading by 45 points may differ to a game where 
the margin is only 3 points going into the last quarter. Furthermore, the mental state of a player as they walk onto the 
ground in the lead up to a preliminary or grand final may differ to a regular home-and-away season game. The 
ability to simulate these types of scenarios for players is paramount, as it enables practice and assimilation to the 
pressures associated with high-stakes matches. Cognitive tests can be used to assess and provide feedback on 
cognition and evaluate improvement or deterioration in domains such as attention, concentration and executive 
functions at critical moments. 
 
6. CONCLUSIONS 
Whilst a range of assessments are available in assessing concussive symptoms, several assessments are typically 
used to provide convergent evidence on presenting symptoms and whether a player should return to play. The most 
commonly used assessment is the SCAT3, and this tool is often accompanied by a computerised cognitive test 
battery such as the CBB. The CBB has been shown to be a valid and reliable assessment of four core cognitive 
domains that can be measured in 10 to 15 minutes. The CBB is typically administered in an individual supervised 
environment, and recent technological advances have enabled this tool to be used in group-based supervised or 
unsupervised settings. The availability of an online version of the CBB will facilitate ease of assessment at elite 
levels, but also facilitate collection of baseline assessment data in amateur and community-based sports. 
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Abstract 
 

Serious breaches of league regulations by sporting clubs lead to management interventions such as monetary 

fines and draft penalties. Draft penalties remove some number of a club’s promised draft selections over one or 

more seasons. Recent prominent examples include the draft penalties imposed upon Australian Football 

League (AFL) clubs Carlton, Adelaide, and Essendon in 2002; 2013; and 2014 respectively. Annual draft 

systems are the principal method by which clubs in closed sporting leagues recruit amateur players. Reverse-

order drafts, such as those used by the National Football League (NFL), National Basketball Association 

(NBA), Major League Baseball (MLB) and the AFL, allow clubs with the poorest win-loss record in a season 

to access the most highly-rated amateur players. Penalising a club through the player draft implicitly assumes 

that high draft picks are valuable and will ultimately improve club performance, and that removal of draft 

picks will reduce the probability of club success in the following years. Currently, there are (i) no mechanisms 

to determine the degree to which these draft penalties might reduce a club’s probability of success, and (ii) no 

clear articulation from management bodies of the desired magnitude of the reduction in the probability of 

success. Here, we use a dynamic simulation model ‘Sports Synthesis’ to capture the key components of a win-

maximising sport league, such as the AFL. Sports Synthesis incorporates an amateur player draft (reverse-

order and others), player productivity, between-team competition and draft choice error (i.e. the ability of 

clubs to determine player quality in the draft). We show how the magnitude of the penalty (in terms of the 

reduction in the probability of success) is dependent on the number and position of draft selections removed, 

key league characteristics (such as draft choice error) and the ladder position (or team productivity) of the club 

when penalties are applied. 
 

Keywords: Simulation modelling, draft penalties, league management, management strategy 

evaluation 
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Abstract 
 

The aim of the present study was to examine general tau theory in relation to the sport badminton. We cover 

the three main concepts of motion-gaps, tau-coupling and time-to-contact. The second half of this paper 

examines how tau theory can be utilised by coaches and trainers in training their athletes. Specifically, we 

discuss anticipatory training, time-to-contact theory, skills acquisition training for badminton program, and the 

required velocity model. Finally, we suggest scenarios and experiments that can be researched in future studies 

to discover an ideal training method that combines both physical training and cognitive recognition. 
 

Keywords: Tau theory, time-to-contact, badminton, skill acquisition 
 

 

1. INTRODUCTION 

Knowing how to anticipate approaching objects and when they will reach a desired goal or target is a crucial 

survival skill for any living organism to possess (Hancock and Manser, 2009). In particular, mastering 

anticipatory skills aide in competitive fast paced sports, where movement has to be controlled by perceiving 

what is likely to occur next (Kayed and Van der Meer, 2009). For example, catching a cricket ball or striking a 

badminton shuttle requires precise prospective control of the interceptive action and must be prepared in 

advance to allow the body time to organize. It can therefore be suggested that prospective control is dependent 

on perceptual information guiding the action so that an extrapolation of movements can be made into the 

future (Kayed and Van der Meer, 2009; Lee, 2005; Von Hofsten, 2007). This theory of prospective control is 

commonly known as general tau theory and has been associated with various forms of development and 

anticipation. This paper will examine tau in detail and explain how it can be used by badminton players for 

skill acquisition training. In addition, this paper will also summarise motion-gaps, tau-coupling and time-to-

contact concepts. 

 

MOTION GAPS AND BADMINTON 

 

The concept of a motion gap can generally be described as changing the gap between a current state and a goal 

state in a given event (Lee, 2005), and is typically linked by an effector. If we take a badminton rally as an 

example, the current state could be the position of the player’s racket, the effector would be the racket itself, 

and the goal state would be the shuttlecock. This is an example of closing a distance motion gap during a game 

of badminton. Other examples include force motion gaps (e.g. a player’s current force and the force required to 

execute a satisfactory jump) and angular motion gaps (e.g. the distance between a player’s current field of 

vision and the direction of the shuttlecock).    

In any given game of badminton, or other racket sports, it is unlikely that an action will only have one 

case of closing a single motion gap. In reality, we need to control several motion-gaps at the same time to 

perform a successful action. For example, executing a jump smash in a game of badminton is an example of 

closing several motion-gaps at the same time. The player needs to coordinate the closure of vision-shuttlecock, 

racket-shuttlecock, and jump-court motion-gaps to perform the jump smash adequately. Performing a jump 

smash, and at precisely the right time, can be a difficult task, especially for such a fast paced sport. To explain 

how performance with such a strict temporal constraint can be executed based exclusively on raw visual 

information, it would be ideal to examine the concept of tau and motion-gaps. 

 

TAU-COUPLING AND BADMINTON 

 

Lee (1998) suggests that tau, as a single type of temporal variable of a changing motion-gap, would provide 

sufficient information for controlling the closure of said motion-gap. The notion of tau is based on Gibson’s 

(1966) work on ecological invariants in visual flow fields. Tau of a motion-gap is the time-to-closure of the 

motion-gap at its current closure-rate: 

 (   )   
 ( )

 ̇( )
   (1) 
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where τ(x, t) represents the tau of the motion-gap at time t. Because tau is a measure on any motion-gap of any 

dimension, it explains how a single type of temporal variable can account for controlling the closure of 

perceptual information from different dimensions of motion-gaps. 

The notion of tau-coupling refers to when two taus are coupled over a period of time if they remain in constant 

proportion during that time (Lee, 2005): 

 

 

 (   )    (   ) (2) 

 
 

where τ(x)and τ(y)represent the taus of two gaps, K represents the coupling constant, and t represents time. For 

example, consider a badminton player intercepting a shuttlecock at point X (see Figure 1).  

 

 
Figure 1: Tau coupling example for scenario 1 

 

The player notices their opponent at point Y so decides to hit the shuttlecock to a location that would be the 

most difficult for the opponent to close (i.e. point Z), given their current location. To execute this action 

successfully, the badminton player needs to control the closure of the shuttle trajectory motion-gap, A, as well 

as the angular motion-gap, B, between the shuttlecock pathway and his opponent at point Z simultaneously. 

Utilising the equation above (2), this scenario can be expressed symbolically as: 

 

 

       (3) 
 

 

Also consider a second scenario where a badminton player running to the left side of the court to return 

his opponent’s stroke from point A (refer to figure 2). To execute this properly, the player has to control the 

closure of both gaps from the player to the shuttlecock, X, and the shuttlecock trajectory route, TR, 

simultaneously. This can be expressed symbolically as: 

 

 

          (4) 
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Figure 2: Tau coupling example for scenario 2 

 

 

TIME-TO-CONTACT IN BADMINTON 

 

Another important concept in understanding tau and tau-coupling, is time-to-contact (Tc). The Tc theory 

suggests that living organisms are able to perceive using visual information to judge distance and speed with 

respect to time (Bootsma and van Wieringen, 1990). In determining Tc, we can utilise tau (mentioned above) 

as our optical invariant because it accounts for perceptual information coming from different dimensions (in 

this case: speed and distance). 

 

Tau relates the optical size of an object to its rate of expansion and can be expressed as: 

 

 

τ = θ/δθ/δt  (5) 
 

 

where θ represents the angle of extension of the object in radians and δθ/δt represents the rate of expansion. 

Under Tc conditions, tau specifies that an object must move with constant velocity. As an example, consider a 

game of badminton played by experts. Instinctively, players are able to return shots of up to 421 km/h based 

on collecting visual information from their opponent’s actions. This plays an important role in the 

development of skill acquisition and training and will be discussed later.   

 In summary, we can infer a number of conclusions regarding the nature in which people and animals use 

tau to guide their movements: 

1. Rather than breaking down actions into discrete movements (ie muscle movements), it is useful to 

consider actions in terms of controlling the closure of motion-gaps 

2. Actions are initiated when a certain threshold of tau (time to closure of the motion gap) is reached 

3. People and animals continuously assess the time to closure of motion gaps (tau). If tau is inadequate 

to complete the desired task (ie cross the court to be in the right position to return a serve), the rate of 

closure can be changed, ie “run faster”, “turn more sharply”, “apply more force with the racket”, etc. 

4. Complex actions involve multiple motion-gaps, which can be controlled by tau-coupling, or linking 

two or more motion-gaps so that they are closed simultaneously.  

 

By combining visual information with an internal forward model of the external state, the relationship 

between position and Tc becomes easily predictable by most animals (de Azevedo Neto and Teixeira, 2009). 

Even in extremely fast-paced sports, humans are able to estimate time windows for successful performances in 

the order of a few milliseconds (Regan, 1992; Tresilian, 1993; Land and Mcleod, 2000; de Azevedo Neto and 

Teixeira, 2009). Therefore, it would be possible to improve a badminton player’s decision making capabilities 

utilising a visual based training model based on the concepts of tau and time-to-contact. 
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2. TAU AND SKILL DEVELOPMENT 

 

Traditional skills training programs for badminton players focus primarily on the development of motor skills, 

such as the mechanics of each type of shot. Cognitive and decision-making skills are generally left to develop 

naturally during games, despite the suggestion that these skills are almost as important as the motor skills in 

badminton (Blomqvist, Luhtanen & Laakso, 2001). Therefore it is beneficial to incorporate aspects of 

cognitive and decision-making skills alongside traditional training approaches. 

 In this next section we will discuss how general tau theory can be used to enhance training programs, 

improve a player’s skills, techniques and overall in-game performance.  

 

USING TAU TO ANTICIPATE TIME 

 

Players can estimate when a shuttlecock will land at a location on the court by making use of tau and the 

knowledge of Tc. However, this does not mean that the shuttlecock will definitely come into contact with the 

racket, for this requires an action on the part of the player that must be geared towards tau (Bootsma and van 

Wieringen, 1990). The synchronisation between movement and visual information can generally be achieved 

be executing the same movement repeatedly, with as little variation as possible. A classic example of this is 

Bootsma and van Wieringen’s (1990) study relating to timing forehand drives in table tennis. The researchers 

suggest that with enough repetition, players have automatically geared themselves towards making the optimal 

forehand drive. In this sense, the only challenge players’ face is deciding when to initiate the drive. The same 

principle can be applied to our badminton example. Players could wait until tau reaches a critical value which 

would indicate the optimal time to execute the movement. Using this technique coaches can train their athletes 

to identify the ideal time to execute an action for any situation during a badminton game. For example, 

coaches may hit a large number of shuttlecocks to the same location on the court with as little variability as 

possible. Players would then keep returning these shuttles until they discover the optimal time to initiate the 

movement execution process (assuming they have already decided the type of shot they will make). This 

approach allows players to develop visual cues which act as signals during real game situations. 

 
TAU-COUPLING TO REFINE COMPLEX MOVEMENTS 

 

The ability to execute high end techniques in badminton require controlling the closure of a set of motion-gaps 

in a specific manner (refer to the example regarding the execution of the jump smash). Lee (2005) suggests 

that skilled movements may be acquired by coupling the taus of the motion-gaps onto the taus of other motion-

gaps and further onto tau-G guides (refer to Lee, 2005 for a detailed explanation of tau-G). As an example, 

badminton players learn to adjust their movement around the court by absorbing the visual information 

provided by their opponents. When following the shuttlecock with their eyes, players learn to not only sense 

the motion-gap between their gaze and the shuttle, but also learn how to control the optimal amount of time 

spent (in the order of a few milliseconds) in gazing at the shuttle and the decision that would follow. Of 

course, no real life event is ever repeated, in the same sense that no badminton rally is ever identical. Thus, 

players learn to improve their skills through constant adjustments of the calibration process of regulating 

power to the muscles on the basis of prospective sensory information about the taus of motion-gaps (Lee, 

2005).  

 

THE REQUIRED VELOCITY MODEL  

 

Peper et al. (1994) suggest a required velocity model which examines Tc and how it can be used to intercept 

moving objects. The model itself specifies how an individual utilises visual information regarding his 

environment continuously to control the hand’s acceleration and match the required velocity needed to 

intercept an object. Generally, the current hand velocity at a given instant t can be increased or decreased for 

the hand to move at the required velocity (Davids, Button and Bennett, 2008) to intercept an object. In a study 

conducted by Peper et al. (1994) the researchers examined the required velocity to catch a ball approaching a 

person at a specific speed. The equation they suggested for the required velocity model can be derived as: 

 

 

  ̈     ̇          ̇  (6) 
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with  ̇       
      

   
  (7) 

 
 

where  ̈ ,  ̇     , and  ̇ , are the hand’s current acceleration, current velocity, and required velocity 

respectively, and α and β are constants, and where   ,   , and     are the hand’s current position, the 

projection of the ball’s current position on the hand-movement axis, and the first-order Tc between the ball and 

the hand-movement axis. Using this model, we can derive a similar equation for the required velocity a 

badminton player needs to intercept a shuttlecock hit in-game: 

 

 

Required velocity = 
               

   
  (8) 

 
 

Because badminton is such a high velocity game, players constantly have to make very quick in-game 

decisions. Macquet and Fleurance’s (2007) analysis of decision-making during badminton matches suggests 

that there are times when the player must give up a shot in order to win the overall set. Therefore a key 

decision-making skill is whether to attempt the return, or give up the shot. Knowing which shots are possible 

from their current position (specifically hand position) and the required velocity they would need to reach that 

point could potentially save them a lot of energy from unnecessary movement and provide a tactical 

advantage. Of course, players wouldn’t have the time to be calculating required velocity in-game, however this 

model may be effective during the training period of the athlete. Coaches and trainers may train players to 

mentally recognise shuttle velocity in relation to their current position, such that in a real game situation, they 

would recognise which shots they should disregard to conserve energy for the next point. 

 

3. CONCLUSION 

 

The first section of this paper attempted to summarise three main concepts of tau theory (motion-gaps, tau-

coupling and time-to-contact) in relation to the sport badminton. The second section examined various ways of 

training badminton players while utilising a general tau theory as a background. Overall, the theory relates to 

the movement guidance of animals and how they acquire understanding of their surrounding environments 

through perceiving visual information. Naturally, anticipating when an object approaches another object is in 

inherent trait most organisms possess. However, it would be interesting to observe if coaches could utilise 

general tau and time to contact theory when training the anticipatory skills of athletes. Perhaps if we have 

more coaches throwing in tau theory during their training sessions, then we may have fewer players throwing 

in the actual towel during their games.  

 

Acknowledgements 

This paper is based on work from the primary author’s Master’s dissertation. A special thanks to the author’s 

principal supervisor, Associate Professor Anthony Bedford, and his assistance with the research. 

 

References 
Blomqvist, M., Luhtanen, P, & Laakso, L. (2001). Comparison of two types of instructions in badminton. European 

Journal of Physical Education, 6, 139-155. 

Bootsma, R. J., & van Wieringen, P. C. W. (1990). Timing an attacking forehand drive in table tennis. Journal of 

experimental psychology: Human perception and performance, 16, 21-29. 

Davids, K., Button, C., & Bennett, S. (2008). Dynamics of skill acquisition: A constraints-led approach. South Australia: 

Human Kinetics. 

de Azevedo Neto, R. M., & Teixeira, L. A. (2009). Control of interceptive actions is based on expectancy of time to target 

arrival. Exp Brain Res, 199, 135-143. 

Gibson, J. J. (1966). The senses considered as perceptual systems. Boston: Houghton Mifflin. 

Hancock, P. A., & Manser, M. P. (2009). Time-to-contact: More than Tau alone. Ecological Psychology, 9, 265-297. 

Kayed, N. S., & Van der Meer, A. L. H. (2009). A longitudinal study of prospective control in catching by full-term and 

preterm infants. Exp Brain Res, 194, 245-258. 

Land, M. F., & McLeod, P. (2000). From eye movements to actions: How batsmen hit the ball. Nat Neurosci, 3, 1340-

1345. 

Lee, D. N. (1998). Guiding movement by coupling taus. Ecological Psychology, 10, 221-250. 



 

P
ag

e
6

8
 

Lee, D. N. (2005). Tau in action in development. In: Reiser, J. J., Lockman, J. J., & Nelson, C. A. (2005). Action as an 

organiser of learning and development. Lawrence Erlbaum Associates, Mahwah, pp 3-47. 

Macquet, A.C., & Fleurance, P. (2007). Naturalistic decision-making in expert badminton players. Ergonomics, 50, 1433-

1450. 

Peper, C. E., Bootsma, R. J., Mestre, D. R., & Bakker, F. C. (1994), Catching balls: How to get the hand to the right place 

at the right time. Journal of Experimental Psychology: Human Perception and Performance, 20, 591-612. 

Proffitt, D. R., & Caudek, C. (2003). Depth perception and the perception of events. In: Weiner, I. B., Healy, A. F., 

Freedheim, D. K., Proctor, R. W., & Schinka, J. A. (2003). Handbook of psychology: Experimental psychology. John 

Wiley & Sons, Inc, New Jersey, pp 213-236. 

Regan, D. (1992). Visual judgments and misjudgements in cricket, and the art of flight. Perception, 21, 91-115. 

Tresilian, J. R. (1993). Four questions of time to contact: A critical examination of research on interceptive timing. 

Perception, 22, 653-680. 

Von Hofsten, C. (2007). Action in development. Dev Sci, 10, 55-60. 

 

  



 

P
ag

e
6

9
 

THE CONVEX HULL OF A BALLPLAYER 
Gerry Myersona,b 

a Macquarie University 
b Corresponding author: gerry.myerson@mq.edu.au 

Abstract 
 
Athletes have their ups and downs. We form expectations of their level of performance based on their 
best years, and may consider they have not lived up to their potential in their other years. We propose a 
way to quantify an athlete's potential, and the extent to which the athlete has fallen short of this 
potential, based on the familiar concept of the convex hull of a finite point-set. We present our method in 
the context of yearly home run production in American major league baseball. 
 

Keywords: Potential, convex hull 
 
1. THE MODEL 
Babe Ruth hit 59 home runs during the 1921 (American major league) baseball season, a record at the 
time. In 1927, he hit 60. One might say that he established that, during the period 1921-27, he had the 
potential to hit 59 or 60 home runs every season. He didn't actually do this; in fact, his home run totals 
in the seasons 1922-26 were 35, 41, 46, 25, and 47. In this paper, we present a candidate definition for a 
player's home run potential at any point in his career, and a corresponding measure of the extent to 
which a player falls short of his potential; we apply our definition and measure to the members of 
baseball's "400 Home Run Club", and to several other players who had notable successes  
in hitting home runs; we analyze the careers of some of the outliers in the study, the players who came 
the closest to, or fell the farthest short of, fulfilling their home run potential.  
          Before we get stuck into it, we wish to stress two things. One, although we will only look at 
baseball, and only at home run hitting, we hope it will be clear that the mathematical tools we use will 
be widely applicable to other sports and indeed to other human endeavors. In essence, they will apply 
whenever there is something that can be counted, with the counts fluctuating from one time period to 
the next. Second, although we speak of players failing to meet their potential, we mean no criticism of 
the players. There are many reasons for failing to meet potential that have nothing to do with personal 
failings of the ballplayer; playing time missed to injuries, or to military service, and just plain luck, to 
mention a few.  
          To create our definition of a player's home run potential for each season in his career, we plot the 
points (i, yi), where yi is the number of home runs hit by the player in the ith year of his career. A career 
is taken to include every year from the first year the individual plays in the major leagues to the last, 
even if that includes one or more years during which he does not actually play. We also plot the point (0, 
0), and, if the number of years in the career is r, the point (r+1, 0). We call this the player's Home Run 
Plot. For example, Ralph Kiner played in the major leagues every season from 1946 to 1955, with yearly 
home run totals  
 

23, 51, 40, 54, 47, 42, 37, 35, 22, 18 
 
so his Home Run Plot consists of the points,   
 

(0, 0), (1, 23), (2, 51), (3, 40), (4, 54), (5, 47), (6, 42), (7, 37), (8, 35), (9, 22), (10, 18), (11, 0). 
 
          We note here that all the seasonal home run figures used in this paper are taken from the Baseball-
Reference website. We then compute the convex hull of the plotted points (or we ask a computer 
algebra package to do this computation for us). In our example, this is the convex polygon with vertices 
at  
 

(0, 0), (2, 51), (4, 54), (8, 35), (10, 18), (11, 0) 
 
          The main properties of the convex hull are that it is convex (so it contains the line segment joining 
any two of its points), its vertices are a subset of the plotted points, and it contains all of the plotted 
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points. It clearly has a lower boundary, the line segment joining (0, 0) to (r+1, 0), and an upper 
boundary, consisting of all the line segments forming the remainder of its perimeter (we are not 
interested in the degenerate case of the ballplayer who hits no home runs during his career).  
          We now define a player's home run potential in year i of his career to be the y-coordinate of the 
point on the upper boundary of the convex hull with x-coordinate i. Thus, Kiner's home run potential in 
the seventh year of his career would be the number y such that (7, y) is on the line segment joining  
(4, 54) and (8, 35), which is 39.75.   
          One might object that no one has ever hit three-fourths of a home run. The objection (mostly) goes 
away when we sum the home run potential over all the years of a player's career, to get the player's 
career potential home runs; for brevity's sake, we refer to this sum as the player's Hull. The sum will be 
an integer or, at worst, a half-integer:  
 
          Theorem. A player's Hull is equal to the area of the convex hull of his Home Run Plot, and can be 
computed by the formula,  
 

One-half the sum of aibi+1 – ai+1bi, i running from 0 to s – 1. 
 
where (ai, bi), i = 0, ..., s, are the vertices of the convex hull, with 0 = a0 < a1 < ... < as.  
 
          The equivalence of the area of the convex hull and the sum of the ordinates of points on the hull's 
upper boundary corresponding to integer abscissas can be seen by partitioning the hull into  
r - 1 trapezoids and two triangles by drawing vertical line segments joining each point (i, 0), i = 1, …, r, to 
the upper boundary and then applying formulas for the areas of trapezoids and triangles. The displayed 
formula is a well-known formula for the area of a polygon in the plane, in terms of the coordinates of its 
corners.  
          For Kiner, we find that his Hull is 396, as compared with his actual career total of 369 home runs. 
As we shall see, Kiner has a remarkably small gap between his Hull and what we may call his Actual.  
 
2. THE 400 HOME RUN CLUB 
Baseball's "400 Home Run Club" consists of those ballplayers whose career home run totals come to 400 
or more. Through the 2015 season, the Club had 52 members. Four of these were active during the 2015 
season, and we have omitted them from this study. For the remaining 48 ballplayers, we tabulate their 
career home run totals ("Actual"), their career potentials as given by the area of the convex hull ("Hull"), 
the difference between these two numbers as a measure of the player's shortfall ("Diff"), and their actual 
as a percentage of their potential ("Percentage", calculated as 100 times Actual divided by Hull), in Table 
1.  
          Most of the percentages follow a fairly flat distribution from a low of 69.69 (Andre Dawson) to a 
high of 86.92 (Adam Dunn). Their are two outliers at the bottom of the range, and they deserve closer 
attention: Ted Williams, 61.84, and Darrell Evans, 58.02.  
          Here are Ted Williams' year-by-year home run counts:  
 

31, 23, 37, 36, 0, 0, 0, 38, 32, 25, 43, 28, 30, 1, 13, 29, 28, 24, 38, 26, 10, 29 
 
          Here and below we underline the numbers that correspond to vertices on the convex hull;  
keep in mind that the convex hull also has vertices at (0, 0) and (for Williams) at (23, 0). The string of 
zeros in years five through seven reflect Williams' military service during the Second World War. The 
model suggests that Williams could have hit 118 home runs during those three seasons. Williams also 
served during the Korean War, playing only six games in 1952, his 14th season, and 37 games in 1953 
(out of a scheduled 154 games each season). Also contributing to Williams' low Percentage is his 
outstanding 19th season, 1957, when he hit 38 home runs. Only Bonds, Aaron, and Ruth have hit so 
many home runs in a season that late in their career.  
 
          Here are Darrell Evans' home run counts:  
 

0, 0, 12, 19, 41, 25, 22, 11, 17, 20, 17, 20, 12, 16, 30, 16, 40, 29, 34, 22, 11. 
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          Evans only played 12 games (out of a scheduled 162) in each of his first two seasons, which 
explains the zeros in those first two years. Nothing explains the two years of 40+ home runs, separated 
by 11 seasons during which Evans averaged only 19 home runs. Evans is a true outlier.  
          Adam Dunn's career, at the top of the Percentage list at 86.92, is also worth a look:  
 

19, 26, 27, 46, 40, 40, 40, 40, 38, 38, 11, 41, 34, 22. 
 
          Only twice in his 14-year career did Dunn fall more than five home runs short of his potential. His 
poor showing in his 11th season, 2011, may be explained by his return to the field too soon after an 
early season appendectomy.  
 
3. OUTSIDE THE CLUB 
We have made an unsystematic selection of 14 ballplayers who did not hit 400 or more home runs, but 
who did have one or more seasons with a large number of home runs. Since this was not an exhaustive 
study, the only thing to be safely concluded from the data in Table 2 is that these players show more 
variability than the group of 48. Several of these players sport percentages lower than those of Ted 
Williams and Darrell Evans, with the most extreme case being that of Hank Greenberg (46.23):  
 

0, 0, 0, 12, 26, 36, 1, 40, 58, 33, 41, 2, 0, 0, 0, 13, 44, 25. 
 
          Greenberg played one game in the major leagues in 1930, spending the rest of that season and all 
of the next two in the minor leagues. This explains the zeros at the beginning of his career. In his seventh 
year, he only played 12 of a scheduled 154 games before a season-ending injury left him with only one 
home run to show for 1936. He was drafted into the Army in May, 1941, just 19 games and two home 
runs into the season. He was discharged from the Army on 5 December 1941, and re-enlisted 
immediately after the US entered the war two days later. He was not to play baseball again until he was 
discharged and rejoined his team halfway through the 1945 season. These circumstances, combined 
with the extraordinary 58 home runs in his ninth year, push him to the top of the "Diff" list, with 385 
career home runs fewer than the convex hull model. Ted Williams is a distant second, at 321.5.  
          We note in passing that Joe DiMaggio and Johnny Mize each lost three years to military service in 
mid-career, contributing to their low percentages.  
          At the other end of the Percentage list, with 93.18, is Ralph Kiner, whose year-by-year totals we 
have already seen. Curiously, Kiner's career, like Greenberg's, was severely affected by military service 
and medical problems. The difference is that Kiner served in the military before his major league career 
began. He was already 23 when he came to the majors, and didn't have the slow start to his career that 
some others did. Instead of coming back from a serious injury, as Greenberg did, Kiner was driven from 
the game at age 32 by a bad back. These factors account, in part, for his coming  
so close to achieving his full potential as a home run hitter.  
 
4. WAY OUTSIDE THE CLUB 
We conclude with the curious cases of Johnny Cooney and Nick Altrock. Cooney was a major league 
pitcher for ten years. He then went down to the minors for four years, and returned to the majors as an 
outfielder for another ten-year stint. During these 24 years, he hit two major league home runs, both in 
the same season. This gives him a Hull of 25, and a Percentage of 8, most likely the second lowest figure 
in baseball history.  
          The lowest figure probably belongs to Nick Altrock. He pitched in 1898, and again from 1902 to 
1909. After that, he would occasionally be used in one or more games at the end of the season, mostly as 
a stunt. His last appearance was in 1933, when he was 56 years old. During this span of 36 years, he hit 
two home runs, one in 1904 and the other in 1918. His Hull is 25.5, his Percentage, 7.84.  
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Table	1

Actual Hull Diff Pct
Barry	Bonds 762 1034.5 272.5 73.66
Hank	Aaron 755 902 147 83.7

Babe	Ruth 714 946.5 232.5 75.44
Willie	Mays 660 923 263 71.51
Ken	Griffey,	Jr 630 843 213 74.73

Jim	Thome 612 744.5 132.5 82.2
Sammy	Sosa 609 799.5 190.5 76.17
Frank	Robinson 586 790.5 204.5 74.13

Mark	McGwire 583 879.5 296.5 66.29
Harmon	Killebrew 573 799 226 71.71
Rafael	Palmeiro 569 663.5 94.5 85.76
Reggie	Jackson 563 783 220 71.9
Manny	Ramirez 555 672.5 117.5 82.53
Mike	Schmidt 548 649.5 101.5 84.37

Mickey	Mantle 536 700.5 164.5 76.52
Jimmie	Foxx 534 759 225 70.36
Willie	McCovey 521 737.5 216.5 70.64

Frank	Thomas 521 706.5 185.5 73.74
Ted	Williams 521 842.5 321.5 61.84
Ernie	Banks 512 661.5 149.5 77.4

Eddie	Mathews 512 625.5 113.5 81.85
Mel	Ott 511 678 167 75.37
Gary	Sheffield 509 699 190 72.82

Eddie	Murray 504 595 91 84.71
Lou	Gehrig 493 658.5 165.5 74.87
Fred	McGriff 493 579.5 86.5 85.07

Stan	Musial 475 616.5 141.5 77.05
Willie	Stargell 475 672 197 70.68
Carlos	Delgado 473 565 92 83.72

Chipper	Jones 468 586.5 118.5 79.8
Dave	Winfield 465 636 171 73.11
Jose	Canseco 462 653 191 70.75

Adam	Dunn 462 531.5 69.5 86.92
Carl	Yastrzemski 452 670 218 67.46
Jeff	Bagwell 449 535.5 86.5 83.85

Vladimir	Guerrero 449 539 90 83.3
Dave	Kingman 442 606.5 164.5 72.88
Jason	Giambi 440 570 130 77.19

Paul	Konerko 439 545.5 106.5 80.48
Andre	Dawson 438 628.5 190.5 69.69
Juan	Gonzalez 434 577 143 75.22

Andrew	Jones 434 568 134 76.41
Cal	Ripken 431 564 133 76.42

Mike	Piazza 427 508 81 84.06
Billy	Williams 426 541.5 115.5 78.67
Darrell	Evans 414 713.5 299.5 58.02

Alfonso	Soriano 412 562 150 73.31
Duke	Snider 407 516.5 109.5 78.8
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Player Actual Hull Diff Pct
Frank	Howard 382 501 119 76.25
Ralph	Kiner 369 396 27 93.18

Joe	DiMaggio 361 622.5 261.5 57.99
Johnny	Mize 359 641 282 56.01
Luis	Gonzalez 354 594.5 240.5 59.55

Hank	Greenberg 331 716 385 46.23
Derrek	Lee 331 472.5 141.5 70.05
Shawn	Green	 328 420 92 78.1

Ted	Kluszewski 279 439.5 160.5 63.48
Roger	Maris 275 405.5 130.5 67.82
Hack	Wilson 244 364 120 67.03

Brady	Anderson 210 400 190 52.5
Jim	Gentile 179 268 89 66.79
Richard	Hidalgo 171 254.5 83.5 67.19

Table 2 

References 
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Abstract 
A common measure used in cricket to summarise the effectiveness of a bowler’s prowess is the bowling 

average.  This metric is calculated by dividing the number of runs conceded by the bowler by the number of 

batsmen that they individually dismissed.  However, when the bowler does not take a wicket this metric is 

undefined within that innings, which can lead to incorrect interpretations of a bowler’s contribution within the 

team context. As cricket is a team game, bowlers work in pairs to create pressure to take wickets for the team.  

Therefore, metrics that reflect this team contribution are more informative and reflective of future 

performance. 

     Reject inference is used to estimate the likelihood of a bowler taking a wicket within an innings based on 

ball by ball data.  This approach is commonly used within the financial services sector to build credit risk 

scorecards due to the non-random absence of behavioural attributes, specifically from applicants with poor 

credit history.  An extensive review of approaches indicates that Memory-based Reasoning delivers superior 

correlation with future performance and a model structure of practical significance. 

     Gradient Boosting was used to select scorecard variables summarising individual bowling performance 

variables that were both practically and statistically significant.  The model indicates that within the limited 

overs game, bowlers who deliver a higher number of dot balls and have a lower economy rate are most likely 

to take a wicket.  The inferred metric for measuring the attacking performance is validated by comparing 

observed and future performance.  As an attacking metric can be defined for every bowler per innings, this 

enables holistic bowling performances to be monitored for changes in form and fitness. 
 

Keywords: Memory-based Reasoning, Reject Inference, Parcelling, Gradient Boosting 
 

1. INTRODUCTION 

Cricket is a bat-and-ball game played by two teams of eleven players. Despite having several different time-

based formats, the objective to accumulate more runs than the opposition remains the same. Fundamentally, 

cricket is a team game, although a contest between an individual batsman and an individual bowler can be 

isolated.  Generally, the goal of the batting side is to score runs, while bowlers attempt to prevent the scoring 

of runs.  Bowlers have different approaches to restricting the scoring of runs, either by attacking (attempting to 

take wickets thereby ending a batsman’s opportunity to score), or defending (minimising the number of runs 

conceded). 

     Traditional metrics for evaluating bowling performance revolve around ratios of three key statistics that are 

observed on a typical scorecard: wickets taken, runs conceded and overs bowled.  The most common measures 

are bowling average (runs conceded/wickets taken), strike rate (balls bowled/wickets taken) and economy rate 

(runs conceded/overs bowled).   

     Lemmer (2012) identifies the recent rise of academic publications surrounding performance measures and 

prediction methods within cricket.  From a bowling perspective, research exists on measurements and 

comparisons of bowling performance (e.g. Bracewell, 1999; Dey et. al., 2011; Lemmer, 2005; Lemmer, 2006; 

Kimber, 1993; van Staden, 2008). 

     Attacking performance for a bowler is determined by either strike rate or bowling average. However, as 

noted by Bracewell (1999) and van Staden (2008), these metrics are not always defined as a bowler may not 

have taken a wicket during a match.  As cricket is a team game, bowlers work in pairs to create pressure to 

take wickets for the team.  For instance, an individual role in a team’s plan could be to restrict scoring in order 

to create pressure, thereby forcing a batsman to attempt high risk shots to score runs.    

     The challenge is to recognise an individual’s contribution to wicket-taking by the bowling team, when they 

may not have taken a wicket themselves.  A meaningful wicket focused metric for non-wicket takers would be 

useful for within-game comparisons, creating individual ratings and team ratings (Patel et. al., 2016).  The 

premise of the bowling average is that better bowlers will concede fewer runs per wicket.  Importantly, after 
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controlling for batting ability, teams comprised of teams with better performed bowlers are more likely to win 

(Patel et. al., 2016).  Given the value of these metrics as an indication of likely future performance, 

understanding the contribution of non-wicket takers using the standard bowling ratios in a single game can 

provide greater insight into potential strategies, team selection and individual performance monitoring. 

 

REJECT INFERENCE 

The requirement to estimate the performance of an individual when data is unavailable is similar to the process 

for constructing application credit risk scorecards in the financial services sector (Montrichard, 2008).  An 

example of this situation is that of a creditor confronted with the problem of determining whether or not a 

credit applicant will be able to repay their loan according to a pre-agreed criteria (lump sum or instalments 

over a fixed time period). Only if the applicant is able to pay back their loan on time and in full are they 

deemed to have not defaulted, with any breaches in their contract resulting in the applicant being classified as 

default. Critically, prior to observing this dichotomous outcome, creditors score applicants on their likelihood 

of default, accepting low-risk applicants.  As creditors do not have outcome data on rejected applicants, Reject 

Inference Methods (RIMs) are implemented to incorporate rejected applicant data and ideally improve model 

scoring predictive accuracy.  Lenders utilise RIMs to salvage rejected applicants to mitigate bias (Verstraeten 

et. al., 2005). 

     To draw parallels between credit risk and cricket, consider the following comparison.  If a bowler takes a 

wicket then they have a defined strike rate (real outcome). This is compared to bowlers who do not take a 

wicket leading to an undefined strike rate (unobservable outcome).  

 

PARCELLING 

Most RIMs, and classification algorithms in general, do not output ‘crisp’ categorisation for predictions. 

Rather, models classifying rejected applicants as default or not default output the ‘fuzzy’ probability of class 

membership. Parcelling refers to the technique, which can typically be separated from the RIM entirely, that 

exploits these predicted probabilities for optimal classification (Anderson, 2007) by defining a membership 

class based on a cut-off which is typically defined by historical data. 

 

2. METHODOLOGY 

DEFINITIONS OF DEFAULT AND REJECTION FOR BOWLERS 

We consider results from the 2015 IPL, where there were 623 different bowling performances over the season. 

Data was extracted from Cricinfo (www.espncricinfo.com). Individuals who bowled one over or less during 

the season were removed, leaving data from 97 individuals. 

     To align with the typical terminology used within reject inference methods and credit risk, we recast 

bowlers as having defaulted or not, and whether they are accepted or rejected for reject inference. Both the 

bowling average and strike rate per game are volatile, since the divisor is typically between 1 and 4 (number of 

wickets taken in a game), with the results being heavily right skewed.  Consequently, the bowlers with strike 

rates in the top 25% were defined as “non-default”, with all others including non-wicket takers defined as 

“defaulted”. All non-wicket takers are defined as rejected. The group of accepted wicket taking performances 

are referred to as AccApps, and all bowling performances are referred to as AllApps. 

     To validate our definition of default, we compared default outcome with whether a wicket was taken. The 

default odds were 2.05 for accepted applicants (0.67/0.33) and 7.41 for those rejected (0.88/0.12). The 

resulting odds ratio indicates default was 3.62 more likely for rejected than accepted applicants, validating our 

definitions.  

 

VARIABLE SELECTION 

The extracted scorecard data contained 14 variables. To find the most significant variables for our modelling 

purposes, we applied a Generalized Boosted Machine Model (GBM) decision-tree based approach. We found 

GBM to be most suitable for our purposes because of its robust assumption properties (non-parametric, non-

linear, ability to handle collinearity and complex interactions). We found the top five variables, listed in order 

of importance, are: economy rate, number of dot balls bowled (dots), runs conceded, number of boundaries 

and number of bowler-penalised extras (wides and no-balls). 

     We tested these variables using a logistic regression on the AllApps group, using the data to predict the 

probability of default. We found that using all of the top five variables led to an Area Under the Curve (AUC), 

derived from the Receiver Operating Characteristic (ROC), curve of 0.832, while using the top three variables 

gave an AUC of 0.833. Given the addition of variables does not improve the discrimination of the model, only 

the top three variables are retained for further analyses. 
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BASE MODELLING 

All records were randomly selected for either the training (70%) or test (30%) dataset. The training set was 

used to model data structures using the statistical models for each RIM in isolation from the test data. Those 

trained models were then used to predict outcomes within the test data to produce model performance metrics. 

     Logistic Regression (LOG) models were used to compare RIMs with the same variables included in each 

model. Separate LOG models for each RIM output predicted probabilities of “default” on the test data set.  

    Rejects (non-wicket takers) had their outcome (Strike Rate) imputed by an observed strike rate regression 

model fitted on all accepted applicant observations (wicket takers) containing the three variables; economy 

rate, balls and dots.  This model is referred to as a non-RIM due to the absence of reject inference. 

 

RIM APPLICATION 

All RIMs were programmed in R. RIMs, and corresponding LOG models, were trained under the assumption 

that real outcomes are unavailable for rejected applicants. The AccApps model was substituted as the pre-

existing scoring system when this was required for RIM creation. 

     Parcelling was applied in code blocks for: Fuzzy Parcelling (FUZ; Anderson, 2007; Siddiqi, 2006), No 

Indeterminates Parcelling (NID) (Anderson, 2007; Siddiqi, 2006), and Proportional Polarised Parcelling (PRP) 

techniques (Anderson, 2007; Siddiqi, 2006; Thomas, 2009).  

     FUZ predicts the default probability of rejects using a model that firstly rates the probability of being 

accepted.  Then the rejected applications are sorted by predicted probabilities of acceptance and then classified 

based on the proportion of the known default rate. Finally, a LOG model is applied on the combined accept 

and reject datasets.  

     NID classifies and combines rejects with extreme predicted probabilities, then discards ‘indeterminate’ 
rejects. An ‘indeterminate’ application has an outcome that is unclear.  For example, in the financial services 

sector an individual who is 45 days past due is not technically in default (60 days past due), but is not current 

either.  

     PRP adds two copies of rejects to the training data and classifies one copy as default and the other as non-

default.  The accepted applications are weighted as 1, the first copy of the rejects is weighted as probability of 

default and the second copy is weighted as the probability of non-default.  

     There were several other techniques investigated (Anderson, 2007; Finlay, 2012; Siddiqi, 2006; Thomas, 

2009; Thomas et. al., 2002); However, the best performing techniques from the analyses identified above 

remain the focus for the remainder of this research.  

 

ASSESSMENT 

Three summary statistics that are overall measures of model performance were calculated, including a 

variation on Type II Error (Max5TII), the AUC, and the Mean Absolute Difference (MAD) between predicted 

probabilities of AllApps and the model being tested. Higher AUC values indicate a higher True Positive Rate 

with a lower False Positive Rate at all possible operating point values (i.e. all possible probability cut-offs). 

AUC values of 0.5 and 1 indicate random guess and perfect predictions respectively. In application scoring, an 

AUC above 0.75 is satisfactory (Anderson, 2007) and 0.80 is “excellent” (Hosmer et. al., 2013), meaning that 

all LOG models achieved comparable industry best practice in overall performance. Lower MAD values 

indicate a smaller average difference between estimated default probabilities from the All Applicants 

(AllApps) LOG (i.e. no sampling bias) and the tested LOG in question (i.e. with sampling bias). Max5TII 

values indicate the number of credit applicants in the test set that were ‘accepted’ prior to reaching a 5% Type 

II Error Rate.  AUC and MAD are the most important measures. 

 

3. RESULTS 

LOG MODEL 

The variables are non-normally distributed, including extreme values and clusters of cases with identical 

values.  Additionally, a linear relationship with the log of the response variable cannot be assumed.  Squared 

Mahalanobis Distances exceeding the Χ
2
 critical value of 22.46 (α=0.999, df=6) identified multivariate outliers 

(MVO). Standardised Pearson Residuals (SPR) exceeding critical values of 1.96
 
(α=0.95) identified model 

outliers. The AllApps LOG had 2 MVO and 21 critical SPR, while the AccApps LOG had 1 MVO and 14 

critical SPR. The records were removed from the training set and the two non-RIM LOGs were retrained. No 

other MVO or critical SPR of the several hundred were removed. They did not prevent relative performance 

comparisons across RIMs and comparisons were fairer if each RIM used the data set without further 

modification. 
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     The two non-RIM LOGs were parameterised and odds ratios with confidence intervals (α=0.95) were 

calculated along with estimation of coefficients. The estimated coefficients for the two models are similar for 

most variables, as well as the odds ratios and significance values. The largest difference occurred between the 

economy rate estimates (1.73 for AllApps vs. 0.94 for AccApps).    

     However, there are two areas for concern arising from the accepted applicant (AccApps) predicted 

probabilities which can be observed in Figure 1a.  More records were classified as very high-risk. Low risk 

applicants were overrepresented for parts of the distribution rather than sharing the low density distribution 

seen in the all applicant (AllApps) predicted probabilities.   

     The scatter plot comparison is shown in Figure 1a.  The non-random selection bias is evident with non-

linear estimation of default risk across the entire distribution for all records.   

 
Figure 1a & 1b. Predicted Probabilities Scatter Plot (AllApps by AccApps) & (AllApps by MBR_PRP) 

 

REJECT INFERENCE METHODS 

All non-RIM and RIM LOG models were used to predict the applicant population within the test data set using 

assessment metrics previously defined. MBR_PRP scored the highest AUC and had a reasonably low MAD. It 

was selected for additional qualitative analysis of predicted probabilities. 

    This model produced predicted probabilities of default for rejected applicants using Memory Based 

Reasoning (MBR). In summary, this method applied a nonparametric machine-learning algorithm, k-Nearest 

Neighbours, which estimated probabilities of default for each rejected applicant record using the 30 ‘nearest 

neighbours’, as determined by Chebyshev distance, out of the accepted applicant records. Probabilities were 

incorporated using the Proportional Polarised (PRP) parcelling technique. This rank orders rejected applicants 

by lowest to highest estimated default risk, according to MBR predicted probabilities, then classifies them in 

proportion to rejected applicant default rate. 

     The previous comparison between AllApps and AccApps in Figure 1a showed that the non-random 

sampling bias caused a non-linear representation of the probability of default.  Figure 1b shows that 

MBR_PRP corrected most distortion, especially through high risk regions, and that error is more evenly 

distributed across all records.  

     Importantly, the probability of default needs to be converted back to the cricket use case for interpretation.  

Comparing the probability of default (performance in bottom 75%) with strike rate revealed that a simple 

linear transformation of multiplying the probabilities by 100 provided a reasonable estimate.  This enables the 

number of wickets per bowler per innings to be estimated, given strike rate is calculated using balls bowled 

and wickets taken.  When a wicket has been taken, this value is used.  Where a wicket has not been taken, the 

inferred wickets are calculated by the inferred strike rate divided by the number of balls bowled.  This 

invariably leads to an estimate of wickets less than 1.  Importantly, the season-observed strike rate and the 

season-adjusted strike rate are correlated (r=0.89), which indicates that undue bias is not introduced. 

 

4. DISCUSSION 

Using the inferred number of wickets, inferred strike rates and bowling averages can be estimated.  If the 

bowling average is assumed to be an indicator of a bowler’s ability, it should be a leading indicator of 

performance.  To test this assumption, the performances of individuals who bowled in six games or more were 
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assessed (n=43).  The observed and inferred bowling averages for the last two matches for each qualifying 

individual were contrasted against the four matches leading up to those two games.  9.1% of the final two 

matches had observed bowling averages that were undefined, highlighting the usefulness of the inferred 

estimates.   

   The inferred bowling average is a better predictor of future performance (using the inferred future bowling 

average) than the observed bowling average, with a correlation of 0.50 compared with 0.41. Correlations for 

the observed bowling average, when defined is 0.41 using the inferred result and 0.34 with the observed future 

result. 

     These results indicate that two of the three standard bowling measures, bowling average and strike rate, can 

be used per innings even when a wicket is not taken due to the reject inference method described.  Importantly, 

the method for reject inference identifies the impact of creating pressure on opposition teams by restricting the 

scoring rate.  This further highlights the impact of the bowlers working in pairs to deliver better outcomes for 

their team.  

 

5. CONCLUSION 

Lenders use logistic regression models to predict the default risk of credit applicants.  A major issue is the non-

random sampling bias that occurs due to the systematic rejection of non-credit worthy applications.  To 

remedy this bias, reject inference is used to estimate the performance of a rejected applicant.   

    This approach was applied to determine the attacking performance of a bowler who did not take a wicket.  

Standard measures such as bowling average and strike rate are undefined when a bowler has not taken a 

wicket.  Additionally, these metrics do not reflect the contribution a bowler may have had towards wicket 

taking due to creating pressure by not conceding runs. 

     To identify relevant attributes for modelling, a Gradient Boosting Machine proved an effective means of 

optimal variable selection.  

     The most effective method for reject inference was Memory Based Reasoning with Proportional Polarised 

parcelling. The model produced predicts that bowlers who deliver a high number of dot balls and a low 

economy rate have a higher probability of taking wickets. 

     Importantly, for bowlers with a reasonable workload over the course of a season (bowling in six innings or 

more), the inferred strike rate is a better predictor of future performances (r=0.50) than the observed strike rate 

(r=0.41).  Consequently, using inferred strike rate and bowling average is a useful mechanism for ranking and 

monitoring bowling performances.  As an attacking metric can be defined for every bowler per innings, this 

enables holistic bowling performances to be monitored for changes in form and fitness.   
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Abstract 

A number of metrics have emerged to summarise batting performance in cricket, ranging from batting 

averages to strike rates.  However, these metrics are summaries of overall performance and are of limited use 

in determining in-game tactics. 

      An expectation of how likely a batsman is to survive each ball faced over the course of an innings can aid 

the development of more effective strategies to optimise a team’s final total.  The objective of this research 

was to formulate a predictive model to calculate the probability of an opening batsman being dismissed in the 

first innings of a limited overs cricket match. The narrowed focus is designed to eliminate confounding factors 

such as match state. 

      Cox proportional hazard models were implemented to consider the potential effect of nine batting 

performance predictor variables on the ball-by-ball probability of a batsman facing the next ball without 

getting out. 

      Through extensive model formation and selection techniques, a contextually and statistically significant 

Cox model was found. This model was capable of predicting the probability of survival for a particular 

batsman, given certain conditions. The cumulative number of runs scored, cumulative number of consecutive 

dot balls faced and cumulative number of balls faced in which less than two runs in four balls had been scored 

for the batsman were all practically and statistically significant.  

     The results show that as the magnitude of these three predictor variables increase for a particular batsman, 

the associated survival probabilities for the batsman either remain constant or decrease on a ball-by-ball basis. 

Based on One Day International matches played between 8
th

 December 2014 and 8
th
 February 2016, the final 

model ranked Sangakkara as the most effective batsman at staying in bat for that time period.  This method of 

calculating player rankings is also correlated with ICC ODI rankings, average runs scored and winning. 

 

Keywords: Survival, Probability, Cox Proportional Hazards Model 

 

1. INTRODUCTION 

Cricket is a team sport in which in-game tactics play an important role in success. These tactics can include 

decisions on batting positions for particular batsman and whether or not an attacking style should be utilized in 

favour of a more reserved playing style. Such tactics are essential to maximise the team’s final total. 

     Survival analysis is a branch of analysis used to investigate the relationship between one dependent 

variable, the time until a particular event of interest occurs, and several predictor variables. The survival 

function refers to the probability that an individual will survive longer than a particular time. The hazard 

function refers to the rate of failure at a particular time given the individual has survived up until that time. 

Cox proportional hazard models are commonly used in survival analysis to model the relationship between the 

hazard function and several predictor variables (Hosmer & Lemeshow, 1999).  

     The literature revealed two key pieces of academic research that focus on the application of survival 

analysis techniques to batting in cricket. Kimber and Hansford (1993) were interested in applying methods of 

survival analysis to batting scores in cricket. In their study, Kimber and Hansford (1993) were interested in a 

batsman being out as the event and took the number of runs scored to represent time until this event occurred. 

It was found that fitting a geometric model to the batting average resulted in poor fit and an inconsistent 

batting average metric.  As such, they suggested an alternative batting average that doesn’t depend on the 

geometric assumption and is adjusted for not-out innings. Kimber and Hansford (1993) concluded that a future 

area of research could be to investigate how additional factors could be combined to illustrate the qualities of 

particularly strong batsmen. Preston and Thomas (2000) applied aspects of survival analysis to investigate 

batting strategies in limited overs cricket. In their study, Preston and Thomas (2000) found that batting strategy 

was driven by the ability to increase the run rate when setting a target, but decreasing the run rate when 



 

P
ag

e
8

1
 

chasing a target. This study extended on work by Kimber and Hansford (1993) by considering the effect of a 

number of covariates associated with optimal batting strategy. These included the required run rate and 

number of wickets lost.  

     Cox proportional hazards models have been studied extensively. There have been over 25,000 citations of 

the original paper by Cox since it was published (Bellera et al., 2010). Lane, Looney and Wansley (1986) 

applied Cox models to the analysis and prediction of bank failure. Nagelkerke, Oosting and Hart (1984) put 

forward a test statistic to assess the proportional hazards assumption.  

     This research builds on these techniques. In particular, it addresses the area of future work suggested by 

Kimber and Hansford (1993) by introducing the effect of a number of potential covariates. It also extends on 

the work achieved by Preston and Thomas (2000) by incorporating additional covariates that were not 

considered. In addition, it emphasizes an investigation into batsman dismissal rather than optimal batting 

strategy. Specifically, a model has been developed consisting of a variety of predictor variables capable of 

predicting the probability of opening batsman being dismissed in the first innings of a limited overs cricket 

match. 

 

2. METHODS 

DATA COLLECTION 

Ball-by-ball data was extracted from Cricinfo commentary (www.espncricinfo.com) for One Day International 

(ODI) cricket matches contested between 8
th

 December 2014 and 8
th

 February 2016. For each ball faced, data 

consisting of a number of variables were collected. These included the match, innings and player identifiers, 

over and ball numbers, bowler and batsman-facing metrics and outcomes from that ball.  Those outcomes 

included if there was a dismissal, number of runs scored and number of extras (only wides and no balls are 

considered due to the audit trail within the data extract).  Matching this transactional information with the 

scorecard data enabled batting position to be established.  Data collection was restricted to within-game 

events.   

 

DATA MANAGEMENT 

Once data had been collected, data management proceeded by removing data not associated with the first 

innings of games and data associated with batsmen in positions three or higher. The narrowed focus was 

designed to eliminate confounding factors such as match state. Variables that could potentially have an effect 

on the prediction of the probability of a batsman being dismissed and could be calculated from the original 

variables were then considered. The cumulative number of runs scored for the batsman and for the team were 

two factors. Similarly, the cumulative number of balls faced by the batsman and the team were also of interest. 

Other factors considered included batsman strike rate, run rate and batting average as well as dot ball and 

consecutive dot ball effects. Another factor was the number of balls faced by the batsman in which less than 

two runs in four balls had been scored. Calculation and incorporation of these variables followed on from data 

manipulation (see results). 

 

MODEL FORMATION AND SELECTION 

This research utilized the Cox proportional hazard modelling technique. A survival object was created and 

taken to represent the response variable in a Cox proportional hazards model. This consisted of a particular 

event and the time taken to that event, in this case the event being a batsman getting out.  It made sense to 

subsequently use the total number of balls faced by the batsman to represent the time to that event.  

     This research progressed by fitting a large number of Cox models, with each individual model consisting of 

a different combination of predictors. For each fitted model, three selection criteria were favoured over 

conventional model selection techniques such as AIC. Model selection was important in order to narrow down 

a set of candidate models. To meet the first criteria, the estimated model coefficients had to make practical 

sense. For example, an increase in predictors such as cumulative runs scored was expected to decrease the 

likelihood of a batsman surviving the next ball. For these predictors, the first criteria was met if the 

corresponding estimated coefficient was negative. Similarly, an increase in resource availability was expected 

to increase the likelihood of a batsman surviving the next ball. In this situation, the first criteria was met if the 

corresponding estimated coefficient was positive. To meet the second criteria, the predictors had to be 

statistically significant. If these first two criteria were met, the third condition specified that the probability of 

batsman survival either remained unchanged or decreased on a ball-by-ball basis. Models that were close to 

meeting either of the first two criteria were also kept in the candidate set. The reason behind this was to be able 

to assess whether insignificant model predictors would become practically and statistically significant if 

transformations were applied. 
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     There are two assumptions that the Cox model relies on. The first states that the effect of each predictor is 

linear in the log hazard function. The second key assumption states that the ratio of the hazard function for two 

individuals with different sets of covariates does not depend on time, suggesting the hazards are proportional. 

This research utilized further unconventional methodology to select a final model to be used for prediction. 

Once the candidate models had been narrowed down, these assumptions were examined to check whether each 

model showed any evidence of violation. Through evaluation of these assumptions, the candidate set of 

models was narrowed down further. From this reduced candidate set of models, the final model was selected to 

be the one believed to incorporate the highest variety of data associated with each batsman.  The variables in 

the final model were: the cumulative number of runs scored, cumulative number of consecutive dot balls faced 

and cumulative number of balls faced in which less than two runs in four balls had been scored. 

  

PREDICTION 

The ball-by-ball survival probabilities for all 43 opening batsman considered were calculated using:  

 

log(p/(1-p)) = exp(β1x1 +β2x2+ β3x3)   (1) 

 

where p represents the probability of survival and β represents the weights for each attribute, x. The survival 

probabilities for each opening batsman in each game were plotted to produce survival curves. Figure 1 was 

constructed to illustrate the ball-by-ball survival probabilities for Guptill and McCullum in the ODI game 

between New Zealand and Sri Lanka on 14
th

 February 2015. Figure 1 also illustrates the ball-by-ball survival 

probabilities for Warner and Finch in the ODI game between Australia and England on 14
th

 February 2015.  

The area under each survival curve and the total area under all curves for each batsman were calculated. To 

account for the differing number of games played by each batsman, the average area under the curve for each 

batsman was computed. This was used as a metric for batsman comparison purposes. Another metric, the 

wins-to-games ratio for each batsman was also calculated. An area-to-games ratio metric was regressed against 

the wins-to-games ratio to assess for a relationship between the likelihood of a batsman getting out and the 

number of wins they achieve.  

 

3. RESULTS 

The final model capable of predicting the probability of survival for a particular batsman included three 

predictor variables. These consisted of the cumulative number of runs scored, cumulative number of 

consecutive dot balls faced and cumulative number of balls faced in which less than two runs in four balls had 

been scored for the batsman. Originally, only the first two variables were practically and statistically 

significant. The estimated coefficients for these two predictors made practical sense and associated p values 

from a z-test were less than the significance threshold of 0.05. Through evaluation of the linearity assumption 

of a Cox model, all three predictor variables showed evidence of non-linearity. To correct for this assumption, 

a square root transformation was applied to the cumulative number of runs predictor and a log transformation 

was applied to the cumulative number of consecutive dot balls predictor. A log transformation was also 

applied to the predictor consisting of the cumulative number of balls faced conditional on less than two runs 

scored in four balls. Once non-linearity was corrected for, the cumulative number of balls faced in which less 

than two runs in four balls had been scored for the batsman became practically and statistically significant. 

Evaluation of the proportionality assumption resulted in no statistical evidence of any violation towards this 

assumption.     

     Figure 1 illustrates a selection of the results from this model.  This model suggests that in the ODI between 

New Zealand and Sri Lanka, Guptill had higher survival probabilities than McCullum. In the ODI match 

between Australia and England, Finch had higher survival probabilities than Warner. These results are likely 

to be of interest to those associated with New Zealand and Australian cricket.   

     Of interest is the apparently different roles adopted by each pair.  Given the survival properties, the results 

imply that McCullum and Warner have opted for a higher risk strategy, whilst Guptill and Finch have been 

more conservative.  Optimal partnership strategies could be derived through further research.  

     As an extension to this research, the final model and associated metric calculations and comparisons could 

be applied to the rest of the batting team in the first innings and to the opposition batsmen in the second 

innings. 
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Figure 1: Survival probabilities from 14

th
 Feb 2015 for Guptill and McCullum in the ODI game between New 

Zealand and Sri Lanka and for Warner and Finch in the ODI game between Australia and England 

 

     As the average number of observations per batsmen is 3.16, results for the 43 batsmen were aggregated into 

groups of 5 according to their rank ordering based on the average area under the curve.   This enabled the 

average area statistic to be assessed as a meaningful measure of performance.  The assumption is that a higher 

area indicates longer periods of time spent at the crease and is therefore indicative of better performances. 

    Firstly, the ODI ICC batting ranking for each batsmen was obtained (www.relianceiccrankings.com).  The 

ranking used was either that following their last international (for retired players) or the ranking as of 8
th
 

February 2016.  The average number of runs scored for the cohort was also calculated.  Each rank-ordered 

cohort consists of 5 batsmen. Figure 2 compares the average area under the survival curve against the average 

ICC ranking per player.  The size of the bubble is based on the average number of runs scored per cohort, with 

that average used to annotate the graph.  The top cohort contained Sangakkara, Samuels, Haque, Porterfield 

and Thirimanne. 

 

 
Figure 2: Average area for rank ordered cohorts compared with ODI ICC batting ranking  

and average number of runs scored for the observed time frame (within bubble)  

http://www.relianceiccrankings.com/
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     There is clearly a strong relationship between average area and the average ICC rankings.  The correlation 

between the square root of the average area and the square root of the average rankings is 0.91, while the 

square root of the average area and the square root of the average runs is -0.87.  This result is not surprising as 

in order to score runs, an opening batsman needs to occupy the crease.    

     The proportion of games won within each cohort is also explored.  The lowest ranked cohort won 0 of 6 

games.  As a consequence this outlier has high leverage and inflates the strength of the relationship between 

the average area and winning.  After removing that observation, an R
2
 of 0.17 is obtained.  The direction and 

magnitude of this statistic indicates that opening batsmen can have a strong impact upon match results by 

batting for sustained periods of time whilst accumulating runs. 

 

4. DISCUSSION AND CONCLUSION 

Through development of a model capable of calculating the ball by ball probability of a batsman getting out, 

we found a different perspective on the assessment of batting performance.  The survival curve that is 

generated enables the risk of different individual batting strategies to be assessed.  For instance, comparing the 

performance of New Zealand opening pair Brendon McCullum and Martin Guptill against Sri Lanka on 14
th
 

February 2015, revealed that McCullum opted for a higher risk strategy on route to 65 from 49 balls (10×4 

runs, 1×6 runs) compared with Guptill’s 49 from 62 (5×1 runs, 0×6 runs).  

     Using the average area under the survival curve as a method for ranking opening batsmen, the final model 

suggests that of the 43 opening batsmen considered, Sri Lankan great, Kumar Sangakkara is the most effective 

at occupying the crease. When Sangakkara retired immediately after the 2015 Cricket World Cup, he was 

ranked number 2 in the world.  This statistic extends understanding of batting performance from batting totals 

and strike rates to encapsulate the risk and in-game strategies adopted by batsmen and teams.  As this is 

inherently linked the manner in which a batsman approaches an innings, it is suitable for further research for 

optimising the output of batting partnerships. Furthermore, this type of analysis may be useful for scouting 

youth talent. 

     Given the increased interest in short forms of the game, particularly T20, statistics that demonstrate the 

positive influence that occupying the crease for opening batsmen has on match outcomes is useful for player 

development, selection and in-game strategies.  Extending this research to T20 matches is clearly of interest.   

     Importantly, this model extends understanding of batting performance from considering just batting totals 

and strike rates to encapsulating risk and in-game strategies adopted by batsmen and teams.  As this is 

inherently linked to actual team approaches, it is suitable for further research for optimising the output of 

batting partnerships. 

     The availability of machine readable access of ball-by-ball data enables deeper understanding and 

derivation of in-game strategies.  This research has highlighted the use of survival analysis as a suitable 

technique for investigating cricket and identified several areas of future research. 
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Abstract 
The scoring record of a batsman in cricket is usually described in terms of batting averages and other bald 

statistics such as the number of centuries scored. These simple single figure measures do not fully capture the 

richness of a typical batsman’s career, nor do they address more complex questions such as what are the chances 

that a batsman will get out before a certain score. A more detailed and informative way of expressing a batsman’s 

career can be derived by considering the experience of a batsman’s innings as a lifespan: when you go out to bat 

you are “born”, you “live” for a number of runs and when you get out you “die”. The list of scores can then be 

analysed in terms of a survival function, as used in medical and engineering applications, that is, the probability 

that something (a product, a patient, a system) will survive beyond a specified time. When a batsman remains Not 

Out (NO) at the end of an innings they do not ‘die’, but they have stopped ‘living’, and this needs to be accounted 

for in the methodology. This is equivalent to the subject leaving the experimental sample pool after being 

observed for a while. A standard treatment of this type of data is through the use of Kaplan-Meier, or Product 

Limit, estimators. This paper will show how a batting record can be expressed in terms of survival function 

curves using Kaplan-Meier estimation techniques. It will be shown how this can be used to visually present and 

compare the histories of different batsmen and can lead to other interesting insights. 
 

Keywords: Cricket, batting, Kaplan-Meier, Product Limit Estimators, survival functions  
 

1. INTRODUCTION 
Ever thought of batting as a life and death struggle against hostile forces? The career scoring record of a batsman 

in cricket is usually described in terms of batting averages and other bald statistics such as the number of 

centuries scored. These simple single figure measures do not fully capture the richness of a typical batsman’s 

career, nor do they address more complex questions such as what are the chances that a batsman will get out 

before a certain score.  
The experience of a batsman’s innings can be described in terms of a lifespan: when you go out to bat you 

are “born”, you live for a number of runs, and when you are dismissed you “die”. The series of these innings are 

thus a sample of such lifespans.    
Thought of in this way, the innings can be analysed in terms of survival functions (Ibrahim (2005)): the 

probability of survival as a function of time, or the probability that the survival time of an individual exceeds a 

certain value, given by S(t) = P(T > t), where T is the survival time.  
Here we will apply those ideas to batting in cricket. In this application “time” is interpreted as a number of 

runs scored. It is not entirely a new idea to apply these techniques to cricket (e.g. Danaher (1989), Kimber and 

Hansford (1995)). This paper extends these ideas by considering the whole curve not just individual metrics. It 

also makes use of the complete cricket databases and computing power now available.  

In this application, it is important to properly consider what happens when a batsman remains not out at the 

end of an innings.  Cricket analysts have considered many ways of treating these events (Cohen (2002)), but they 

are a standard part of a survival interpretation. In these cases, the batsmen do not ‘die’, but do stop ‘living’, 

equivalent to a subject being observed for a while, then leaving the sample pool before the final outcome is 

achieved. This is termed censored data.   
 

2.  ESTIMATION OF SURVIVAL FUNCTIONS 
These types of problems are commonly addressed using Kaplan-Meier (KM) estimators, more commonly known 

as the Product Limit Estimator (PLE) (Kaplan and Meier (1958), Klein and Moeschberger (2003), Ibrahim 

(2005)). An important property of the PLE is that it is non-parametric. The PLE only uses the data to generate an 

estimate of the “true” underlying survival function. Another important advantage of the PLE method is that it can 

take account of censored data in a relatively straightforward manner. The PLE is the unbiased maximum 

likelihood estimator of the survival function of the underlying population. 
The formulation of the PLE is based on the conditional probability that an individual dies in the time interval 

from ti to ti+1, given survival up to time ti is estimated as di  / ni where di is the number who die at time ti, and ni is 

the number alive just before time ti, including those who will die at time ti 

The formulation is intuitive and fairly easy to calculate, especially when expressed recursively: 

mailto:bernkach@outlook.com
mailto:bernkach@outlook.com
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𝑆(𝑡𝑗 ≤ 𝑡 < 𝑡𝑗+1) = 𝑆(𝑡𝑗−1 ≤ 𝑡 < 𝑡𝑗)
𝑛𝑗−𝑑𝑗

𝑛𝑗
  (1) 

 
Without censoring, the PLE at any given time is simply the number still alive divided by the number 

originally in the sample. The use of the recursive formulation (1) makes it easier to consider censored data. The 

PLE survival estimator is piecewise constant with discontinuities at the times of death
1
. The PLE approaches the 

true survival function for that population as the sample size increases.  
The PLE curves provide a visual depiction of all of the raw data, often including explicitly marking the times 

of censoring, and give a sense of the underlying probability model to guide or even obviate the need for further 

analysis.  
There are several drawbacks in this estimator, however, some of which will be seen in the examples below. 

Firstly, the vertical drop at specific times is drawn from the data, and do not indicate specific “danger times”. 

Also the probability of surviving each “danger time” depends only on the number of items at risk at that time, not 

the specific time of censoring. The PLE also gives no prediction of performance beyond the largest data point if 

the highest score is censored. Finally, the reduction of the sample at large values means the effect of each 

individual failure on the size of the step-down increases and the accuracy of the estimate decreases at long times,. 
 

3. APPLICATION TO CRICKET 
In applying the PLE to cricket,  a batsman’s death means being dismissed, being censored means completing the 

innings before being dismissed (remaining NO), and time is interpreted as number of runs scored. The batting 

survival function is then probability that a batsman will score > x runs or S(x) = P(X > x) .The time intervals are 

equivalent to the run intervals between dismissals (xj = #runs of j th dismissal).  
Unlike many applications, cricketers can, and often do, get 0 runs (or ducks), so the survival functions will 

not in general start from unity at x = 0. In addition, unlike true time, the number of runs is a discrete quantity not 

a continuous one. This is not a problem for the PLE analysis, and it is often the case in practice that the 

experimental time is discrete (for example, patients monitored at regular intervals).   
We have initially restricted our analysis to long form matches as these are the most conducive to high scoring 

innings, have a longer history for comparison purposes and to bound the scope of the analysis.  We have used the 

cricket database from cricinfo (2016) and cricketarchive (2016) for the data in this paper. These are extremely 

rich datasets which can be mined from many different angles. To illustrate the survival analysis concepts, 

consider the batting statistics of Steve Waugh (SW) and Sachin Tendulkar (ST). Both are highly rated with a 

similar career batting average
2
 (51.5 for SW and 53.8 for ST) and have a large number of innings, that is, a 

relatively large sample size. SW has a much larger ratio of NOs (18%) than ST (10%)
3
, so we can highlight the 

effect of these on the survival estimates.  

Without the consideration of the censored data (the NOs
4
), the PLE survival curve simply reverts to the 

percentage of scores less than or equal to a certain number of runs. This is shown as ‘uncensored’ in Figure 1. 

Including the NOs in the formulation, we get the curves marked ‘censored’ in Figure 1. As expected, the survival 

rates increase, particularly in Waugh’s case from noticeably below Tendulkar’s to closely mirroring it. The 

relatively large number of NOs (11) for SW at around 120-160 runs are clearly shown in the survival curve and 

strongly affect the behaviour of his survival function at higher scores. 
The integral of the survival curve gives the expected lifetime. This measure has been used by some authors to 

get a better measure of batsmen ranking than traditional averages (for example Danaher (1989)). Discussion of 

this type of analysis is outside the scope of this paper, however.  

                                                
1
 Or whatever event is being monitored 

2
 Defined in the traditional sense of number of runs scored / number of dismissals 

3
 In fact he is renowned for his batting with lower order batsmen (see 

http://thecricketcouch.com/blog/2013/01/02/playing-with-the-tail/  
4
 Technically, a batsman can also be “Retired - not out”, having stopped batting because of injury, illness or other 

cause. We include these together as NO as they are mathematically equivalent. 
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Figure 1 Product Limit Estimator survival function for Steve Waugh (SW) and Sachin Tendulkar (ST), plotted on 

linear (left) and logarithmic (right) scales.  
 

4. COMPARISON BETWEEN BATSMEN 
Confidence intervals can be placed on the derived curves using the so-called Greenwood formula (Greenwood 

(1926). These are less accurate in the tail of the curves, where by definition the sample size is smallest. 

Unfortunately, as we will see it is often in the tails of the curve where the distinctions between batsmen are 

found. There are other formulations (Klein and Moeschberger (2003)) which if anything tend to increase the size 

of the intervals.  
To illustrate how the use this formulation in comparing batsmen, we now consider the survival curves of two 

specialist batsmen with significantly, in a cricket fan sense, different averages. We choose Steve and Mark 

Waugh (SW and MW), not just because they are brothers but because the latter’s batting average, while quite 

respectable at 41.8 does not put him in the top ranks amongst cricket enthusiasts. The curves, see Figure 2, show 

similarities at low scores with MW following constant hazard (log-linear) behaviour very similar to SW at scores 

up to about 50 then an increasing drop off thereafter.  From these curves we can surmise that MW was as reliable 

a batsman as SW in getting to about 50 or so runs but then fell away in performance.
5
  

We have also shown in Figure 2 the confidence intervals for these players using the Greenwood formula with 

a 95% confidence level further emphasising the separation of the curves for larger scores. 
 

 
Figure 2 Estimated survival functions for Steve Waugh (SW) and Mark Waugh (MW). 95% confidence limits are 

shown as dotted lines. 
 

A number of ways of statistically comparing the whole survival curves exist. In this paper we shall use the 

unweighted Log-rank test. The log-rank test for difference in survival between two groups is the most powerful 

test when the proportional hazards assumption holds (Klein and Moeschberger (2003)), which as we shall see is 

commonly assumed to hold for this data and is a reasonable assumption for at least parts of the batting survival 

functions. It is clear from the extent of the confidence limits in Figure 2 that we might be hard pressed to prove 

                                                
5
  This is evidence supporting cricketing folklore that MW lost concentration after a period of batting. 

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250

P
ro

b
ab

ili
ty

 o
f 

su
rv

iv
al

Number of runs

swaugh uncensored

swaugh censored

tendulkar uncensored

tendulkar uncensored

0.00

0.01

0.10

1.00

0 50 100 150 200 250

P
ro

b
a

b
il

it
y 

o
f 

su
rv

iv
a

l

Number of runs

swaugh uncensored

swaugh censored

tendulkar uncensored

tendulkar censored



 

P
ag

e
8

8
 

statistically significant differences between the SW and ST survival curves and this is confirmed with the log-

rank test, although many observers rate Tendulkar as one of the best batsman of all time. Log-rank analysis of 

SW and MW shows no statistical difference (just) at the 95% level using the whole dataset but strong significant 

differences (>99%) if consideration is restricted to greater than 100 runs.  
 
5. BATTING HAZARD FUNCTION  
The instantaneous hazard function (or failure rate) h(t) is defined from the reliability/survival function, S(t), and 

is given by h(t) = - S’(t)/S(t).  The hazard function is a conditional probability of the failure density function S' 

(t), conditioned that failure has not occurred at time t.  
If the failure distribution is exponential then the failure rate is a constant and vice versa. This is known as a 

memoryless property. The discrete equivalent of this distribution is the Geometric, which strictly speaking should 

be used for the discrete data being considered here. The Geometric distribution approaches the exponential 

distribution when the sample size is large and the probability of each change is small.  Cohen (2002) shows how a 

Geometric distribution can be derived from assuming, inter alia, that both the probability an innings ends with 

each ball faced and the probability batsman makes a scoring shot with each ball faced is a constant, thus making 

ball to ball independence explicit. Whether batting follows a memoryless distribution or not is a profound concept 

for cricket enthusiasts. It implies that no matter what score you are on you have the same probability of getting 

out. It also influences the notion of batting form - is there such a thing if no matter what score you are on, you 

have the same chance of being dismissed?  
A pioneering study by Wood (1945) indicated that a Geometric distribution was broadly representative of the 

batting data he considered. This conclusion has been disputed in later studies (e.g. Kimber and Hansford (1995)), 

but many subsequent analyses have reinforced its applicability at least in some instances (e.g. Barr and der 

Honert (1997), Bracewell and Ruggiero (2009), Bailey and Clarke (2004)). One common characteristic is the 

tendency of Geometric distribution to underestimate the number of 0s (or ducks) and overestimate the number of 

100+ scores. 
A simple test of whether the batting statistics follow a memoryless distribution is whether the logarithmic 

plots of the PLE are straight lines with the slope of the line of best fit giving the failure rate. A visual examination 

of Figure 1 shows that the linear approximation may indeed be valid until the high scoring regime, and excepting 

very low scores.  

For scores less than 100, the failure rate for SW and ST is about 0.016, or 1.6% per run, with very good 

correlation to linear (R
2
 = 0.99)

6
. Scores over 100 show a decrease in linearity (R

2
 for SW = 0.86) and for ST an 

increase in hazard rate (0.0195) which could be simply a result of a decreased sample size and a concentration of 

NOs in this regime, but also reflects these batsmen behaving differently once they have reached their century.   
Figure 3 shows the PLE of Jacques Kallis (JK) of South Africa and Kumar Sangakkara (KS) of Sri Lanka. 

These are recent batsmen of similar high averages (55.4 vs 57.4) and relatively high number of innings. Both 

batsmen show very similar behaviour up to about 75 runs, but beyond that more differences are apparent than 

between SW and ST. Like SW, JK has a large number of NOs compared to KS (40 vs. 17), almost 25% of these 

being at scores of 130 or more. On the other hand KS has a greater number of very high scores (11 vs 2 of >200). 

Both of these can be clearly seen through observation of Figure 3. JK and KS also appear to show some 

determination to reach 100 as can be seen by decreasing failure rate on approaching this milestone.  A log-rank 

analysis does not find statistically significant difference between the two players. 

 

                                                
6
 Batting data has a chance of failure at exactly zero; hence the LOBFs have a non-zero intercept. 
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Figure 3  PLE survival function for Kumar Sangakkara (KS) and Jacques Kallis (JK) (left); and Jack Hobbs (JH) 

and Patsy Hendren (PH) (right). 
 
In order to show the effect of high sample size on the PLE curves, Figure 3 also shows the first class careers 

of English players Jack Hobbs (JH) and Patsy Hendren (PH). These were chosen due to the extremely high 

number of innings (>1300), high and similar batting averages (50.7 and 50.8 respectively) and overlapping 

playing periods. The curves are smoother than those previously discussed yet still show the piecewise linearity 

and effects of higher NO scores beyond about 200 runs. The similarity of JH and PH survival up until 100 runs is 

remarkable, as is the obvious deviation for > 100. For PH the hazard rate remains very similar across most of the 

data set whereas for JH a much better fit to a constant hazard is gained if we consider <100 and >100 (failure rate 

0.017 vs 0.023) as separate regimes. The score less than 100 are also a better fit to linearity (R
2
 of 0.998 vs 

0.985). A log-rank analysis confirm no statistical difference if the whole dataset is included but significant 

difference (>95%) appear if more than 100 runs is only considered. This is evidence supporting the anecdotal 

statement of Wood (1945) that JH would get himself out after scoring 100 as he had already given the crowd their 

entertainment. The detailed difference between these curves for players with very similar bulk statistics is 

indicative of the ability of this type of analysis to tell a broader story. 
 

6. APPLICATION TO ALL PLAYER STATISTICS 
Modern computing allows us to apply the PLE technique to large data sets, so that we are able to compare not 

only players, but teams, batting positions, left and right handers, how out etc. Using every Test innings ever 

played, the technique allows us to investigate accepted cricketing wisdom, such as the best batsman bats at 

number 3 in the batting order, and that batting in the 4th innings of a Test is much harder than the others. These 

are illustrated in Figure 4. 
The much larger data sets, a total of about 76,000 innings, give smoother survival curves than for individual 

players, however the discontinuities in the curves are still evident at the tails. Note that each curve is constructed 

from different distributions representing different batsmen; hence at best reflect a mixed exponential distribution, 

not an exponential per se. Figure 4 shows that batting positions 3 and 4 indeed have the best performance, but 

they have very similar survival curves
7
. Interestingly the opener listed as number 1 has a higher survival rate than 

the opener listed at 2. It may be then that the better batsman generally faces up first. The curve for number 5 also 

clearly shows a reduction in hazard rate as these batsmen approach the 100 and 200 milestones.  

In terms of which innings is the easiest to bat in, Figure 4 suggests that the scores in innings 3 and 4 are 

indeed less than those in 1 or 2. This could be due to the difficulty of batting on a deteriorating pitch, but may 

also reflect the less open-ended nature of these innings compared to the first innings
8
 (see also Borooah and 

Mangan (2010)). The greater number of NOs in innings 4 can also clearly be seen. 
 

  

                                                
7
 The high sample size means that there is a quite high power of the log-rank to detect significance, but none was 

found between these. 
8
 That is teams can either run out of playing time or stop batting once they have passed a required total. 
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Figure 4  PLE survival function for all batsmen in Test matches split by batting position (left) and innings number 

(right) 
 

7. CONCLUSION 
We have shown how a batsman’s total career can be illustrated through the use of survival curves. These can 

also be used to compare the characteristics of batsmen in a way that measures like average or percentiles struggle 

to achieve.  In particular the performance of batsmen at different parts of their innings can be inferred. 
Looking at the complete survival curves provides an explanation for the mixed success of tests for 

memoryless distributions. For many batsmen this provides a very good fit, but only to parts of their performance 

curve, generally at scores of less than 100, sometimes considerably less. In addition some batsmen’s behaviour 

can be split into different regimes, low and high scoring.     
Because of the richness of the data set this type of analysis can also be used to explore various global 

assumptions about batting and batsmen in cricket. Conversely, a single batsman’s career can easily be split into 

phases or various opponents etc. 
This analysis has also illustrated the drawback of applying strict statistical tests in areas where their 

applicability is not clear, particularly with the small, in statistical terms, sample sizes of a single batsmen’s career. 
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Abstract 
Cricket is an ideal sport to isolate individual team member contribution with respect to winning.   This is due 

to the volume of digital data available, combined with the relatively isolated nature of the batsman versus 

bowler contest observed per ball. 

     As cricket, like many other sports, is reliant on the contribution of individuals and their interactions, there 

are fluctuations in match outcomes. Understanding the root causes of this variation can help interested parties 

derive insight into team success and potential strategies for optimising performance. 

     Understanding the individual dynamic within the team setting can lead to improved team ratings.  The 

objective of this research was to develop a roster-based optimisation system for limited overs cricket by 

deriving a team rating as a combination of individual ratings. The intent was to build an adaptive optimisation 

system that selects a cricket team of 11 players from a list of available players, such that the optimal team 

produces the greatest team rating.   

     The attributes used to define the individual ratings are based on the statistical significance and practical 

contribution to winning. An adaptive system was used to create the individual ratings using a modified version 

of a Product Weighted Measure. The weights for this system were created using a combination of a Random 

Forest and Analytical Hierarchical Process. 

     The underlying framework of this system was validated by demonstrating an increase in the accuracy of 

predicted match outcomes compared to other established ranking methods for cricket teams.   For the 2015 

IPL, this approach outperformed published subjective assessments by 20% and an implementation of an 

objective calculation by 13%. 

    The results show that cricket team ratings based on the aggregation of individual playing ratings with 

attributes weighted towards winning limited over matches are superior to ratings based on summaries of team 

performances and match outcomes. 
 

Keywords: Adaptive System, Product Weighted Measure, Analytical Hierarchical Process 
 

1. INTRODUCTION 

The growth of sport analytics and the need for meaningful sport related statistics has emerged in recent 

decades due to the popularity of professional sport as live and televised entertainment.  This has led to 

increased investment in players and teams. The rise in player salaries and salary caps over the last 25 years 

provide ample evidence of the growth of sport analytics, with investors, franchises, clubs and other 

stakeholders wanting to determine the true value of their investment. For example, in the National Football 

League (NFL) there has been an increase of approximately 950% in player salaries since the 1980’s, and an 

increase of 288% in salary cap since 1994 (Vroom, 2012). With global sports revenue estimated to grow by 

US$145.3 billion over the 2010-2015 period (Fenez & Clark, 2011) and the large investment of resources and 

the stakes involved, coaches and managerial staff cannot solely rely on subjective views and personal beliefs 

to make team and player selection decisions. 

     The explosion in the sporting industry in terms of popularity and revenue is evident in cricket. Cricket has 

seen huge global growth in revenue in recent years, and transformed into a sporting juggernaut due to the 

advent of T20 cricket. The Economist reported that global cricket will generate total revenues of 

approximately $2.5 billion over the period 2014-2022. 

     Given the myriad of numerical data generated by sports, it is paramount that meaningful information is 

extracted from the data. There is a breadth of academic literature applying various statistical techniques to 

myriad sports.  For example, Di Salvo et. al. (2010) utilised discriminant analysis to identify performance 

metrics that significantly distinguish between winning, losing and drawing team in the Europe Champions 

League. Annis et. al. (2005) claimed that traditional win/loss and points scored ranking models applied to 

American Football fail to produce satisfactory rankings. The study therefore developed a hybrid paired 

comparison model which outperformed competitor models, producing robust results under model 

misspecification. Further, a modified least squares ranking procedure was developed in by Harville (2003) to 
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rank division 1 American men’s college basketball teams using game outcomes. The results showed that the 

predictive accuracy of the modified least squares (76.3%) method outperformed that of the basic least squares 

(74.2%). 

     Cricket has recently seen an exponential rise in the use of statistics to make informed and strategic 

decisions regarding player and team performance. Furthermore given the sports data rich environment and its 

increase in popularity over the past decade, cricket has recently seen an increase in analytical literature and the 

adoption of predictive methodologies at the professional level. 

 

RESEARCH MOTIVATION 

There is a scarcity in literature surrounding team rating systems utilising individual ability. This demonstrates 

a lack of demand and reflects a historical lack of access to data and computing resources. The research 

objective was to develop a roster-based optimisation system for T20 by deriving a meaningful, overall team 

rating using a combination of individual ratings from a playing eleven.  The optimal team was defined as the 

set of 11 individual players that produce the greatest probability of winning for team,  , against any given 

opponent,  . 
It was hypothesised that a team rating system accounting for individual player abilities, outperforms systems 

that only consider macro variables such as home advantage, opposition strength and past team performances. 

This research centres on the development of an adaptive-predictive rating system, characterised by utilising 

past player performances, and accounting for the long and short term variability of a team’s performance. An 

adaptive method was preferred as it updates player and team ratings “based on historic performances upon 

availability of data about current performances” (Leitner, 2010, p.3).  The assessment of system performance 

was observed through the prediction accuracy of future match outcomes, and benchmarked against the New 

Zealand Totalisator Agency Board (TAB) and CricHQ’s predictive system (Bracewell et. al. 2014). 

     There are five key components in the development of the adaptive rating system: The first component was 

the data. The second component was the significant performance metrics. The third component was the 

optimisation system. The fourth component was the individual player rating system. The fifth component was 

the models ability to generate the probability of winning. 

 

DATA 

The analysis required end-of-match scorecard data for T20 cricket. Data was extracted from Cricinfo 

(www.espncricinfo.com). The developed system was tested on the Indian Premier League 2015. The scorecard 

data was split into a batting and bowling dataset outlining performance metrics, by player. 

 

2. SIGNIFICANT PERFORMANCE METRICS 

A random forest technique was introduced to handle multicollinearity and complex interactions to identify 

performance metrics that significantly affect a player’s contribution to team winningness. Significant 

performance metrics were derived in terms of winningness (i.e. proportion of wins). The five most important 

metrics were: strike rate, balls faced, batting average, total runs scored and percentage boundaries. Percentage 

boundaries (batsmen) is defined as total boundaries divided by total balls faced. Interestingly these important 

metrics are associated with scoring efficiency (i.e. strike rate and percentage boundaries), scoring consistency 

(i.e. batting average) and scoring volume (i.e. total runs scored). The five most important bowling metrics 

were: economy rate, bowling average, strike rate, percentage boundaries and percentage dots. Interestingly, 

these important metrics are associated with wicket-taking efficiency (strike rate and bowling average), 

boundary prevention (i.e. percentage boundaries) and run restriction (i.e. economy rate and percentage dots). 

Percentage boundaries (bowlers) is defined as total boundaries conceded divided by total balls bowled, while 

percentage dots is defined as total dots divided by total balls bowled. The results show that reducing the 

number of runs conceded and increasing the rate at which wickets are taken are significant to winningness. 

 

3. BINARY INTEGER PROGRAMMING 

The optimisation method required the implementation of a binary decision variable, assigning a value = 1 to 

selected players and value = 0 otherwise (i.e. not selected). Since the adaptive rating system requires selecting 

players associated with the largest individual ratings, given a set of team and player-type constraints, a 

maximisation objective function is implemented. A Binary Integer Programming Model was adopted with the 

following framework: 
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The BIPM objective function: 

  ∑∑      

  

   

 

 

   

 

where     represents the player rating for player   in role  ,             , 

 

             {

                    
                    

                        
                           

 

Decision Variable: 

 

     {
                                    

           
 

 

The decision variable are binary identifiers for player-type i and player j, where (i=1,2,3,4) and (j=1,2,..,  ). 

 

MODEL CONSTRAINTS 

Model constraints that accurately reflect a team’s composition and the type of talent required to win T20 

cricket matches were assessed. The constraints must take into account the number of batsmen, bowlers, all-

rounders, wicket-keepers and number of players required to build a cricket team. Given that model constraints 

were team orientated rather than individual player constraints, performance metrics that contribute 

significantly towards winningness at the team level, as opposed to the individual level, were established. The 

constraints were formulated such that the ‘optimal’ team produces the greatest probability of winning. 

     Applying the random forest technique the results indicated that batting metrics were of greater importance 

than bowling metrics for winningness among T20 teams. The results showed that seven of the top ten metrics 

were batting orientated, and predominately geared around scoring efficiency and consistency. It was revealed 

that batsmen with high scoring efficiency and scoring consistency are necessary to increase a team’s chance of 

winning a T20 cricket match. Moreover, the results indicate that the model constraints should be formulated 

such that the optimal team generated by the optimisation system has a greater batting focus than bowling 

focus.       

     The constraints persuade the model to produce an optimal team with a heavy focus on batting ability as the 

model constraints require the optimal team to possess a greater number of batsmen than bowlers.  

 

Constraints T20 

Team ∑∑   

  

   

   

 

   

 

Player ∑     

 

   

 

Batsmen ∑(       )   

 

 

Bowler ∑(       )   

 

 

All-rounder ∑     

 

 

Wicket-Keepers ∑     

 

 

 

Table 1: Player-type and Model Constraints 
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4. EVALUATING INDIVIDUAL PLAYER AND TEAM RATINGS 

The individual rating method implemented into the adaptive rating system was a combination of the Product 

Weighted Measure + Analytical Hierarchy Process and Exponentially Weighted Moving Averages. 

The optimal team rating was calculated by aggregating individual player ratings of the selected players. This 

aggregation approach was justified in (Damodaran, 2006), stating that cricket is a sport characterised by one-

on-one interactions between batsmen and bowlers, and that a players ability establishes the outcome of this 

interaction. Moreover the match outcome is defined by the interactions between batsmen and bowlers, 

therefore summing the individual player ratings provides a fair indication of team strength. Once ratings for 

team i and j have been calculated, the Bradley-Terry model was applied to calculate the probability of team i 

beating team j: 

     
  

     

 

     Leitner (2010) stated that the outcome of many sporting disciplines can be determined by pairwise 

comparisons, and that the outcome of a match or game is dependent on the current ability of the two teams. 

PRODUCT WEIGHTED MEASURE 

The Product Weighted Measure (PWM) was developed and applied by Croucher (2000) to rank batsmen, 

bowlers, wicket-keepers and all-rounders in international one day cricket. The method produces raw ratings for 

each player and then calculates the actual ratings relative to other players within their player-type (please refer 

to [6] for further details on how each player-type rating is derived). However the performance metrics used to 

rank the players were selected in an ad hoc manner, and the weightings, were subjectively chosen. Given the 

difference in importance of each performance metrics, the author introduced a novel method, utilising the 

Analytical Hierarchy Process and Random Forest technique, to determine the appropriate weightings, α, for 

each important performance metric, for each player-type. 

ANALYTICAL HIERARCHY PROCESS 

The Analytical Hierarchy Process (AHP) is a multi-criteria decision making tool developed by Thomas Saaty 

(1987). Given a user defined pairwise comparison matrix, the AHP translates the matrix into a vector of 

relative weights for each criterion element using a mathematical model. The pairwise comparison matrix 

provides a numerical comparison of each attribute with respect to the other attributes being evaluated. These 

matrix entries are determined using the fundamental AHP scale and are based on prior experience or expert 

knowledge. Applying the AHP to the pairwise comparison matrix translate the subjective weights into 

objective weights, representing the importance of the attribute relative to the other attributes. Moreover the 

method implements a consistency measure for each attribute to ensure that the ‘user’ defined weights are 

consistent and reduces bias in the decision making process. 

 

RANDOM FOREST + AHP WEIGHTINGS 

The system for determining the appropriate weightings is outlined as follows: 

1. Identify the order of importance for each performance metric, for each player-type.  

2. Use the order of importance to create a     pairwise comparison matrix, for each player-type, 

where each entry,     represents the importance of criteria i with respect to j. The relative importance 

of each performance metric,     , follows the importance order established by the random forest 

importance plot. For example, if percentage boundaries are of greater importance to winningness than 

batting average, for batsmen, the relative importance of percentage boundaries versus batting average 

> 1.  

3. Run the AHP on the pairwise comparison matrix and generate the weights associated with each 

performance metric for each player-type. The following weightings were generated:  

 

 
 

Table 2: Weightings for T20 cricket performance metrics       

Performance Metrics Batsmen Bowlers All-rounders Wicket-Keepers 

Total Runs Scored 0.33 - 0.34 0.33 

% Boundaries (batting) 0.30 - 0.30 0.30 

Batting Strike Rate 0.37 - 0.36 0.37 

% Boundary (bowling) - 0.30 0.35 - 

Bowling Strike Rate - 0.33 0.27 - 

Economy Rate - 0.37 0.38 - 
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     These weights align with findings established above, stating that a winning T20 team requires players with 

high scoring efficiency, high scoring consistency and high run restricting ability. The table shows that metrics 

such as batting strike rate, total runs scored and economy have a greater weighting relative to other metrics.  

  

FORECASTING METHOD 

Since the PWM ratings are generated relative to the sum of the other ratings, for a given player-type, this 

enables the ability to track player performance on a match-by-match basis, and assesses a player’s progression 

as the season matures. The time-stamped ratings enabled the application of forecasting methods to player 

ratings. Daniyal et al. (2012) applied Exponentially Weighted Moving Average (EWMA) control charts to 

individual batting performances. Moreover, exponential smoothing was applied by Clarke (2011) to predict 

tennis player ratings. It was found that exponential smoothing produced predictive player ratings. Bracewell 

and Ruggiero (2009) utilised control charts to monitor batting performances of New Zealand domestic 

cricketers, and established that control charts such as EWMA accurately forecasted a batsmen’s form. 

 

SYSTEM ACCURACY 

The EWMA methodology was embedded into the PWM individual rating method with a weighting measure of 

0.72. This method predicts a players rating for the following match, and filters the predicted ratings through 

the optimisation system to generate a forecasted team rating. Applying this method to the Indian Premier 

League (2015) the following predictive accuracy was established: 

 

Competition TAB CricHQ Adaptive System 

Indian Premier 

League 
60% 64% 72% 

 

Table: 3: Predictive Systems Accuracy for 2015 IPL Tournament 

 

5. DISCUSSION AND CONCLUSION 

Given cricket’s exponential growth into a multi-billion dollar industry, it has become more critical than ever to 

introduce analytical methods for team selection. The adaptive system is useful for decision making among 

coaching and managerial staff, in terms of player selection, and can be implemented to identify the optimal 

team for T20 cricket.  

     The lack of academic literature surrounding team rating systems utilising individual ability within cricket, 

the absence of the application of predictive techniques to forecast match outcome and the growing popularity 

of sports betting, established an entry point in the market for this research. 

     This research developed a roster-based optimisation system for T20 cricket by deriving a meaningful, 

overall team rating using a combination of individual ratings from a playing eleven. The research revealed that 

an adaptive rating system accounting for individual player abilities, outperforms systems that only consider 

macro variables such as home advantage, opposition strength and past team performances. The assessment of 

system performance was observed through the prediction accuracy of future match outcomes. 

     The adaptive rating system was applied to the Indian Premier League 2015, and the systems predictive 

accuracy was benchmarked against the New Zealand Totalisator Board Agency (TAB) and the CricHQ 

algorithm. 

     The results revealed that the developed rating system outperformed the TAB and CricHQ algorithm by 20% 

and 13%, respectively. The result demonstrates that cricket team ratings based on the aggregation of individual 

player ratings are superior to ratings based on summaries of team performances and match outcomes; 

validating the research hypothesis. This demonstrated that rating systems that consider micro variables 

generate greater predictive accuracy than systems that only consider macro variables. 
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Abstract 
 

The famous (and occasionally infamous) Duckworth-Lewis methodology for dealing with interruptions in 

limited overs cricket matches made its international debut in early 1997. For 20 years, it has set the standard 

for target adjustment at nearly all levels of the game. In that time, it has not been static. In 2003, the 

Professional Edition of the method was introduced to handle changes to scoring patterns which were becoming 

apparent in modern cricket. We here detail the Duckworth-Lewis-Stern (DLS) method, adopted in 2014 and 

designed to deal with the now common extreme scoring rates seen in limited overs matches, particularly 

Twenty20. In addition, we outline key principles governing the structure and properties of target adjustment 

methods and compare DLS to other proposed procedures. 
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Abstract 

This paper reports our recent findings on the analysis of riders’ performance patterns in the new (third version) 

Track Cycling Omnium. We have made use of statistical and machine learning techniques to analyse data in 

recent omnium competitions and compared the results with our previous findings on the older version of the 

omnium to understand how and whether the new omnium requires different skill sets and strategic planning for 

elite riders and their coaches. The results of our analysis shows that for both male and female riders, sprint 

abilities are more important than endurance abilities in the current omnium, contrary to the previous omnium 

where endurance abilities were slightly more prominent in female medal winners. In addition, the Flying Time 

Trial race remains the most important race for men while Individual Pursuit has become more important for 

female riders. 
 

Keywords: Track cycling omnium, rule changes, performance analysis 

1. INTRODUCTION 

This work focuses upon track cycling omnium coaches as decision makers who identify talent and conduct 

strategic performance planning for cyclists that compete in the multi-event track cycling omnium. Such advice 

is given to coaches/riders before and during the omnium events. The goal is to select the best performing 

cyclists and support them to finish in the highest possible position in the competition. 

Track cycling omnium is a competition that was introduced by the International Cycling Union (UCI) in 

2007. It originally consisted of five individual events. In December 2009, the UCI announced new changes to 

the omnium competition (addition of an extra event, the elimination race, and held over two days rather than 

the previous one) that took place for the first time in the 2010–2011 track cycling season and the 2011 World 

Cycling Championships. It was contested for the first time at an Olympic Games in London in 2012. The 

individual events in the second version of the omnium included: 

 Flying Time Trial: 250m for men and women: Cyclists compete in a short flying lap that has 

traditionally been used for qualification in other cycling events (e.g., sprint competitions). Each rider 

completes their FTT separately.  

 Points Race: 30km for men and 20km for women: This is a mass start event involving a large number 

of riders on the track at the same time. Every 10 laps, a sprint is held and the top four finishers are 

awarded 5, 3, 2, and 1 point(s), respectively. Any rider who takes a lap on the field is awarded 20 

points for each lap taken. The rider with the most points is the winner of the event. 

 Elimination Race: 24 riders and 50 laps for men and women: 24 riders compete in a race where every 

two laps, the last rider over the finish line is eliminated until only a single rider remains and is decided 

as the winner. 

 Individual Pursuit: 4km for men and 3km for women: Two riders start a race from opposite sides of 

the track on the pursuit line at the bottom of the track. The riders start at the same time and both must 

complete the race distance to record a time for the ranking relative to the other cyclists. 

 Scratch Race: 15km for men and 10km for women: All contestants start from a start point at the same 

time and need to complete a certain number of laps. If a rider gains an entire lap ahead of the other 

riders, she/he will have an advantage over the riders who have completed fewer laps. 

 Kilometer Time Trial: 1km for men and 500m for women: Riders compete against the clock to secure 

the fastest time. Riders are sent out individually in set time intervals. Whilst still considered a sprint, 

the distances are considerably longer than those in the flying time trial event. 

mailto:john.zeleznikow@vu.edu.au
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Each omnium has 24 competitors.  The winner of each event receives, 1 point, second 2 points etc.  The 

points for each of the 6 events are summed together.  The winner of this version of the cycling omnium was 

the competitor with the least number of points. 
The mixture of skills and levels of performance that is required in multiple-component competitions 

makes it difficult to determine what strategies and/or athletes best suit a plan to maximize the possibilities of 

winning medals in such competitions (Ofoghi, Zeleznikow, MacMahon, & Dwyer, 2010). Some example 

studies on multiple-component sports include the works by Zwols and Sierksma (2009), Kenny, Sprevak, 

Sharp, and Boreham (2005), and Cox and Dunn (2002) on decathlon, as well as Ofoghi, Dwyer, Zeleznikow, 

MacMahon, and Rehula (2016) and Cejuela, Pérez, Villa, Cortell, and Rodríguez (2008) on triathlon. 

In respect of track cycling omnium, we carried out a number of analyses in both of the old five-event and 

the second version (six-event) omniums to find winning performance patterns in the omnium with the aim of 

assisting coaches in decision making towards selecting the most appropriate riders to compete in the contest 

(Ofoghi, Zeleznikow, Dwyer, & MacMahon, 2013; Ofoghi, Zeleznikow, MacMahon, & Dwyer, 2011; Ofoghi 

et al., 2010), and to find the optimal performance patterns in terms of rankings in the omnium individual 

events before and during the omnium (Ofoghi, Zeleznikow, MacMahon, & Dwyer, 2013) to help cyclists 

strategize for finishing in the best overall position at the completion, given their performances to specific 

stages in the omnium. We also analysed the individual event Elimination Race to better understand how riders 

can avoid elimination in different stages of the event (Dwyer, Ofoghi, Huntsman, Rossitto, MacMahon, & 

Zeleznikow, 2013). 

In 2014, the omnium went through a third round of changes made by the UCI. Effective from June that 

year, the current omnium includes the same six events as in the second version of the omnium, held over 2 

days. However, the order of the events has changed and it now consists of the Scratch Race, an Individual 

Pursuit, an Elimination Race, a Kilometer Time Trial, a Flying Time Trial, and a Points Race. For the first five 

events, the winner is awarded 40 points, the rider in the second place receives 38 points, etc. Riders who are 

ranked 21
st
 and below are awarded 1 point. In the sixth event (Points Race), cyclists add to and lose points 

from their points total based on the laps gained and lost (plus and minus 20 points) as well as the points they 

win in the sprints of the race (A sprint is held every ten laps, with 5, 3, 2, and 1 point(s) being awarded to the 

top four finishers in each sprint). The winner of the omnium is the rider who obtains the highest total points. 

To win the omnium, a rider must have completed every individual event in the omnium. 

The current research aimed at building on previous work on supporting decision making in the older 

versions of track cycling omnium and further developing the understanding of performance patterns in the 

current omnium in effect as of June 2014. More specifically, this paper has a focus on finding winning patterns 

in the current omnium, for both female and male riders, using statistical and machine learning techniques. 

From a practical point, we are interested in whether the rule changes for the third version of the cycling 

omnium have led to changed outcomes. 

2. METHODS 

RESEARCH QUESTIONS 

The first step of our analysis was to determine how the new rules effective since 2014 have impacted the 

omnium competition. This led to the question of how the riders would have finished in previous omniums if 

they had to compete with the rules that apply to the current version of the omnium. Second, our intuition was 

that the overall score that riders collect in the Points Race has now become more important than before as this 

is currently the last individual event in the omnium. Therefore, another question was to determine if riders 

reaching a high score in the Points Race will be more influential, than previously, in the overall standings. As a 

generalization of this question, we then decided to find the significance of each individual event for the overall 

standings of riders in the new omnium as compared with the previous omnium. Following our previous work 

on the second version of the omnium, we also wanted to understand which type of cycling expertise, i.e., sprint 

or endurance abilities, plays a more important role in the current omnium for both male and female riders. 

 

DATA COLLECTION 

To find answers to the afore-mentioned questions, we collected the results of all omnium competitions since 

2010 in the UCI World Cup, UCI World Championship events and the 2012 Summer Olympics. We decided 

to not consider the results of competitions prior to 2010 as there is a significant gap between the scoring 

systems of the first and the third versions of the omnium. Further, the second and third versions of the omnium 

include the same six events and are held over two days.  Therefore, we only focused on the results of the 

second and third versions of the omnium for all of the analyses in this paper. We only looked at the rankings of 
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riders in each individual event and their overall placing for the first version of the omnium. For the current 

(third) version of the omnium, we collected the scores of cyclists in the individual events and overall. 

3. ANALYSIS AND RESULTS 

To answer the first research question on the impact of the new rules on the omnium, we converted the results 

of all the previous omniums (i.e., the second version of the omnium) to the scores the riders would have 

collected with the new scoring system in the omnium. For this, the rankings of riders were converted to the 

scores they would have achieved in each individual event. The overall standings of riders were then inferred 

by comparing the overall scores of the riders calculated using this new scoring system. Then, statistical 

measures were used to determine whether the differences between the overall standings of riders with the old 

and new scoring systems are significant. The results of this analysis are shown in Table 1. 

 

 

Statistical method Men Women 

KL Divergence 91.4236 35.1771 

Paired T-Test (p-value) 0.9050 1.0 

T-Test (p-value) 0.9823 1.0 

Table 1: The results of statistical analyses of the differences between the overall rankings of riders in previous omniums 

with the old and current scoring systems 

 

The results shown in Table 1 show that the differences between the overall rankings of riders with the 

scoring system that was in place at the time compared with the rankings that the riders would have achieved 

with the current scoring system are not statistically significant. This suggests that the scoring system would 

have made no significant impact on the overall standings of neither male nor female riders in the omnium even 

if the new scoring system had to be applied to the rankings and scores of the riders. 

The second round of the analysis was focused on the significance of the Points Race specifically and all 

the other individual events in the omnium. The Pearson Correlation measure was used in this case to measure 

and compare the correlation of the results of riders in each of the individual events with the overall placings of 

riders. 

 

 

Individual event 
Men Women 

omnium II omnium III omnium II omnium III 

Flying Time Trial 0.84 0.81 0.70 0.65 

Points Race 0.68 0.47 0.58 0.65 

Elimination Race 0.64 0.68 0.66 0.63 

Individual Pursuit 0.74 0.79 0.80 0.77 

Scratch Race 0.63 0.67 0.66 0.64 

Kilometer Time Trial 0.70 0.73 0.82 0.76 

Table 2: The results of the correlation analysis of the performance of riders in each individual event with their final 

standings in the second and third versions of the omnium, i.e., omnium II and omnium III 

 

The correlation results in Table 2 suggest that the new omnium rules as applied in the current version of 

the omnium has had a mixed impact on the significance of the performances of riders in the Points Race on the 

overall standings of the riders. For men, the Points Race is now less correlated with the overall rankings of 

riders whereas for female riders, it has become more associated with the final standings in the omnium. 

In addition, the results in Table 2 demonstrate that for men the new rules have had no significant impact 

on the other five individual events. This can be observed by comparing the correlation measures for omnium II 

and omnium III. Nevertheless, the Individual Pursuit and Kilometer Time Trial events have become slightly 

more important. And among all of the individual events, the Flying Time Trial is still the most correlated 

individual event with the overall omnium rankings, contrary to the intuition that the Point Race would be the 

most correlated event with the final standings. 

For female riders, the correlations of the rankings in the other five individual events with the overall 

placings have changed almost to the same extent as for men. The Individual Pursuit has now become the most 

correlated race with the final standings contrary to omnium II in which the 500 Metre Time Trial was the most 

important event. And similar to what was found in the results of male riders, in women’s omnium III 

competitions, the Points Race is not the most important race of the six in the omnium either. 
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To understand which type of cycling expertise is more important for male and female riders to finish the 

current omnium with a medal, we divided the riders in three categories: i) riders on the podium, ii) riders 

ranked between 4 and 10, and iii) those who finished in places above 10. Then, we adopted the same 

methodology as in our previous work (Ofoghi et al., 2011) to calculate the mean sprint score (mss) and mean 

endurance score (mes). For the current analysis, however, we have changed the formulae of the mss and mes 

scores as shown in Equation 1 and Equation 2, respectively, where         is the mean of the scores of riders 

in the event   which was calculated using the K-means clustering algorithm (MacQueen, 1967). The change in 

the calculation of the mss and mes scores was based on advice from a track cycling expert. 

    
                   

 
 (1) 

    
                 

 
 (2) 

 

To make the mss and mes scores comparable across the two versions of the omnium, we transformed the 

rankings of riders in the second version of the omnium to scores (i.e., rank 1 replaced with 40 points , rank 2 

replaced with 38 points, etc. as explained in the Introduction). 

The results of the mss and mes score analysis are summarized in Table 3. From these results, it can be 

observed that sprint ability is still more important for male riders who finish the current omnium with a medal 

(as in the previous omniums). This is understood when comparing the mss scores and mes scores for the riders 

in the same omnium version III. The difference between the mss and mes scores in the new omnium is 

approximately 2 points (33.18 vs. 31.32) which eventuates to 1 rank difference. From the second version of the 

omnium to the current version, however, the overall sprint ability required for winning a medal has slightly 

decreased (from 33.53 to 33.18).  

 

 

Gender/version 
mss  mes 

Podium fs 4-10 fs >10  podium fs 4-10 fs >10 

male/II 33.53 30.03 12.78  31.81 25.96 14.01 

male/III 33.18 24.86 12.93  31.32 26.26 12.85 

        

female/II 32.08 26.35 12.44  32.66 25.13 13.64 

female/III 34.74 26.10 13.19  33.43 25.72 14.19 

Table 3: The sprint vs. endurance ability analysis of omnium II and omnium III competition results for men and women. 

Note: fs = final standing, mss = mean sprint score, and mes = mean endurance score. 

 

More importantly, from Table 3, for female riders, the endurance ability is not the more important 

expertise required to finish the current omnium with a medal anymore. In the second version of the omnium, 

the endurance ability was slightly more important for medal winners (32.08 in omnium II vs. 32.66 in omnium 

III); however, in the current omnium, sprint ability has been shown to be slightly more important as indicated 

by the difference between a mss of 34.74 vs. a mes of 33.43 for riders on the podium. 

4. DISCUSSION 

As with our previous research on the cycling omnium, our research does not concur with the intuition of 

cycling experts. For example, the six-event Omnium was supposedly intended to give endurance riders a 

chance to compete and win medals in track cycling According to Cycling Weekly “The format for the Olympic 

Games Omnium event has been confirmed by the UCI, with the elimination race being added to make the 

competition more conducive to endurance riders”; (Birnie, 2009). In Ofoghi et al. (2013a), we noted that 

although most statistical test results are not significant, the addition of the elimination race event to the second 

version of the omnium seems to have failed to achieve the goal of bringing more opportunity of medal winning 

to endurance riders.   

Anderson (2014) notes that “the riders' overall points tally will be taken in to the final round points race 

and added to, or subtracted from (should they lose a lap), meaning spectators can follow the overall 

classification as it happens”. According to Guardian (2014), “the points race is even more important now after 

the UCI, cycling’s world governing body, reshuffled the order of the omnium disciplines”. Similarly, our 

intuition was that the overall score that riders collect in the Points Race should now become more important 

than before as the Points Race is currently the last individual event in the omnium. But surprisingly, riders 
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reaching a high score in the Points Race did not achieve (compared to previous outcomes), a higher score in 

the overall standings. Indeed, we found that differences between with the current and previous scoring systems 

are not statistically significant and that the changed scoring system has no discernible impact on the overall 

standings of either male or female riders in the omnium 

On the other hand, the new rules do not seem to have changed the dynamics and the importance of each of 

the individual events of the omnium in the overall success of male riders, as evident in the correlation 

measures summarised in Table 2; whereas for female riders this has resulted in some minor shift towards the 

Individual Pursuit. 

When focusing on the two types of cycling expertise, i.e., sprint vs. endurance, overall, sprint ability has 

been shown to be slightly more important in the current omnium for both genders, contrary to the previous 

version of the omnium where medal winning female riders were required to have more endurance power. This 

is a slight paradigm shift for the coaches of female omnium competitors as well as the riders who target 

podium places in the current omnium events. 

5. CONCLUSIONS 

We carried out statistical and machine learning analysis on the competition results in the third version of the 

track cycling omnium and compared the results with those on the second version of the omnium. The results of 

our analyses show that the current omnium has had some impacts on the performance patterns of both male 

and female riders, especially those who finish on the podium. The most important individual events are now 

the Flying Time Trial and Individual Pursuit for men and women, respectively. Any contrary to our intuition, 

the performances of riders in the final individual event, i.e., the Points Race, do not seem to have the highest 

impact on winning the omnium. On the other hand, while the sprint ability was only more important for men in 

the previous version of the omnium to win a medal, in the current omnium, both men and women are required 

to have slightly higher sprint abilities than endurance power in order to secure a greater chance of finishing the 

omnium in a medal winning place. 
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Abstract 
 

Today’s diverse football codes share similarities (kicking goals, the fair catch, offside and two types of an 

early rule called the rouge) by which a fascinating evolution can be traced much as the migration of 

humankind can be traced by DNA. Prior to 1800, football in England was a rough, continuous-action sport 

with many variations. Only goals counted. After 1800 two evolutionary paths emerged. In the “schools” path, 

Eton and others championed what become the Football Association or FA (1866) kicking game while Rugby 

and others led to the creation of the running game and to the formation of the Rugby Union (1871). Playing 

conditions and the shape of the available ball were important stimuli. Both codes allowed a fair catch and the 

Eton rouge until 1866. Rugby reached Canada in 1861. The American code combined versions of the kicking 

game from 1869-1875 and then switched to the Canadian rugby code in 1876. Scoring rules were adopted by 

the American and Canadian codes in 1883 and by Rugby Union in 1886. Professional rugby (Rugby League) 

began in England in 1895, the same year that professional football began in the American code. 

Tackling/heeling entered American (1882), Canadian (1887) and Rugby League (1906) codes. The forward 

pass was legalized by American (1906) and Canadian (1929) codes. The “public” path led to Australian Rules 

(1859) and Gaelic (1888) football, both purposely different from other codes with the Sheffield rouge and no 

offside rule. Today’s codes share a remarkably interactive history.. 
 

Keywords: Soccer, Rugby Union, Rugby League, American football, Canadian football, Australian 

Rules football, Gaelic football 
 

1. INTRODUCTION 

A casual examination of today’s major football codes reveals obvious similarities among pairs of codes such 

as with American and Canadian football codes, with Rugby Union and Rugby League and with Australian and 

Gaelic football codes. On the other hand, Association football is clearly different from those six codes in that 

handling is only allowed by the goalkeeper. How did those codes arrive at their current forms? A similar 

question can be asked about the races of humankind. Obvious physical regional similarities exist, but how did 

those races reach their current locations? As to humankind, DNA is used. Common sets of DNA indicate 

common ancestry while different DNA sequences indicate which races separated in the march “out of Africa”. 

Further, tool making is well known to have accelerated and affected the growth and distribution of humankind.  

Rules are the DNA of football. I believe that rules such as the Eton Rouge and Sheffield Rouge have been 

overlooked as markers of the evolution of football codes. Those rules will be discussed as one contribution of 

this paper. As football evolved “out of England” the tool was of course the football, the shape of which I 

believe is overlooked as a prime cause of the early evolution of codes, another contribution herein. 

This paper begins with the separation of football into kicking and running codes in England with a focus on 

the root causes, not just on dates. The story of William Webb Ellis as a possible influence of rugby will be 

briefly discussed. The evolutionary story then moves to American and Canadian codes where scoring rules 

demonstrate interactivity of code evolution. Rugby League is covered with other rules evolutions. Finally 

Australian and Gaelic codes appear to have purposely followed Sheffield and not London/FA rules. A 

concluding figure shows a side-by-side comparison of codes much as has been done using DNA for 

humankind. Due to space limitations, a few of almost 100 references are placed at the end. 

 

2. RUNNING AND KICKING CODES EVOLVE AFTER 1800 

Prior to 1800, there appear to be two versions of football. An earlier London dispatch quoted in the 2 April 

1733 edition of The Weekly Rehearsal, a Boston newspaper, describes a football playing mob invading 
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Christmas Day services in Chester by kicking a ball down the main isle and putting out candles. On the other 

hand, a 14 February 1736 article in the New York Weekly Journal states “Two to one is odds at Foot-ball”. 

That article indicates that odds such as two to one had already entered the vernacular and that football had one 

version that was organized well enough so that a prediction of the outcome was possible. Few rules were 

written down; but, generally the ball was pushed or kicked forward until it was propelled through a goal. 

 

FACTORS INFLUENCING THE RULES 

By 1800, football had evolved in two directions: schools and clubs. The English public school system began to 

use that game to teach sportsmanship; however, the form of play had to be safe for England’s future leaders. I 

believe there were three main influences on the evolution of the school game: ego, the type of playing field 

and the available ball. On one hand, Eton, Winchester, Harrow and others played in cloisters or in confined 

areas. These schools favoured more of a kicking/dribbling game. Conversely, Rugby, Marlborough, 

Cheltenham and others had larger grassy playing areas that supported running with the ball and tackling. 

Rugby School had (and still has) the famous “Close”. A close was the 17
th

 and 18
th

 century term for a large 

playing field enclosed by some marked boundary. The ego (or leadership) of Eton and Rugby mandated that 

their games were to remain different, one emphasizing kicking and the other running, mainly due to safety 

considerations; however, a number of rules were common to both codes.  

The third influence was the ball. Prior to about 1820, the ball was composed of a pig bladder, blown 

up by lung power. By 1823, William Gilbert of Rugby, England produced a ball with a pig bladder covered by 

a leather exterior. The current Gilbert Museum has an exhibit with a pig-bladder ball and an early Gilbert ball. 

The discussion by a contemporary player displayed by the Museum indicates that the resulting plum-shaped 

ball could either be dribbled or handled with equal ease. I believe this multi-purpose ball allowed the Eton and 

Rugby factions to employ similar rules. There were four common rules to the kicking and running codes from 

about 1820 to about 1866.  

 Goals were scored by kicking 

 Fair catch/mark 

 Offside was determined by the location of the ball 

 Eton Rouge 

The fair catch involved catching the ball in mid air, making a mark where the ball was caught and making 

a free kick for goal from that mark. The Eton Rouge survives in today’s codes (with varying outcomes) and is 

much overlooked as a common feature. Eton Rules were first published in 1815. If the ball was kicked into the 

in-goal area and the attacking team touched it first, the attacking team was awarded a free kick at goal. If the 

defending team touched the ball first, the defending team was awarded a free kick away from its goal. Kicking 

the ball into the in-goal area to create a score is an obvious feature of Rugby Union today, but was then also a 

feature of the kicking game that eventually became Association football. 

 

RULES PROLIFERATE AND CODES SEPARATE  

Rules were published starting in 1815 by proponents of the kicking game and by proponents of the running 

game. One source of rules was the Sheffield Football Club whose rules evolved from the clubs path rather than 

the schools path 

 Kicking Code 

    Eton 1815, 1847 

    Cambridge 1856 

    Uppingham 1862 

    Sheffield 1858, 1861, 1863, 1867, 1870 

    Football Association (FA) 1863, 1866, 1869, 1871 

 Running Code 

    Rugby School 1845, Rugby Union 1871 

What caused the proliferation of rules after 1860? By 1842, the Gilbert football factory had moved nearer 

to The Close at Rugby School to be more visible to all comers, where is remains today. Further, Gilbert 

displayed a more regularly shaped oval ball at the Great Exhibition of 1851. Richard Lindon had lived next 

door to the Gilbert factory in Rugby on High Street before Gilbert moved to the current location. Lindon went 

into the football business and by 1862 he perfected the use of a rubber bladder and pump to replace the pig 

bladder and lung power. Lindon marketed a spherical ball and an oval ball. I believe that football organizers of 

that era knew full well the new developments in football production and that it was necessary to chose between 

running/tackling (using the oval ball) and kicking/dribbling (using the spherical ball). The FA rules of 1863 

deleted the fair catch and “hacking” a tripping move. In 1866, the FA dropped the Eton Rouge, eliminating all 
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in-goal activity and completely eliminating handling except by the goalkeeper. A number of clubs still 

employed the Sheffield Rules which allowed batting the ball, allowed pushing the ball with the body, had no 

offside rule and had a unique scoring system, the Sheffield Rouge, that still exists in Australian Rules and 

Gaelic football as will be noted later. Three side-by-side boxes (goals) were formed by four uprights with a 

crossbar across all four uprights. A shot into the middle box was scored as a goal while a shot into an outer 

box was scored as a rouge. If the game was tied on goals, the team with the most rouges was the winner.  The 

Rugby Union formed in 1871 as the running code. By 1877 the last Sheffield Rules teams had joined the FA 

leaving Association football as the only kicking code.   

 

3. WILLIAM WEBB ELLIS 

The Rugby Union World Championship trophy is called the Webb Ellis Cup. Famously, a statue on The Close 

in Rugby states “With a fine disregard for the rules of football as played in his time, Webb Ellis first took the 

ball in his arms and ran with it thus originating the distinctive feature of the rugby game.” What we actually 

know about Webb Ellis is that he was born at either Salford or Manchester in 1806, attended Rugby School 

from 1816-1825, was known as taking unfair advantage at cricket, went on to play cricket at Cambridge, 

became an Anglican clergyman and died in 1872.  

William Bloxam wrote letters to The Meteor in 1876 and 1880 (four and eight years after Ellis’ death) 

stating the only known case for Webb Ellis “William Webb Ellis whilst playing Bigside at football in 1823 

caught the ball in his arms. According to the then rules he ought to have retired back … for it was by means of 

these placed kicks that most goals were kicked. Ellis disregarded this rule…rushed forward with the ball in his 

hands, with what result as to the game I know not, neither do I know how this infringement … was followed 

up, or when it became .. a standing rule.” Bloxam mentioned no actual witness (he wasn’t there himself) nor 

did any witness ever come forward. Webb Ellis may have cheated a few steps while taking a fair catch or 

kicking for an Eton Rouge, but that hardly created a new game.  

An inquiry by the Old Rugbeians in 1895 states “Running with the ball in the latter half of 1823 by 

Mr. W. Webb Ellis …was regarded of dubious legality for some time, and only gradually became accepted as 

part of the game.” An exhibit at the Gilbert Museum states that by 1830-1840 running in was tolerated.  The 

ball could be kicked out for a fair catch and try at goal. It wasn’t until 1841-1842 that running the ball was 

completely legalized, resulting in a try at goal. If Ellis did run with the ball, it took several years for any 

changes to be made. It should be noted that 1895 was the year when Rugby League separated from Rugby 

Union. Rugby Union needed to maintain visibility with the public and Webb Ellis fit the bill.  

 

4. CANADIAN AND AMERICAN CODES BEGIN 

Rugby reached Canada in 1861. In 1869, the first American football game was played between Rutgers and 

Princeton. The organizers of that game chose a combination of the two dominant kicking (non carrying) codes 

of the day, FA Rules and Sheffield Rules, the latter allowing batting the ball and pushing the ball forward with 

the body. For this rather rough kicking game, scoring was via goals kicked under a crossbar. As with the Eton-

Rugby rivalry in England, rivalry between Princeton and Harvard proved important to the evolving American 

code. While most games from 1869 to 1875 were played under FA-Sheffield rules, Harvard preferred the 

“Boston Game” in which the ball could be carried if the player was pursued. Harvard played McGill of Canada 

in 1874 and 1875, half the game played under Boston Rules with limited carrying and half the game played 

under Rugby Union rules with unlimited carrying. Since Harvard preferred the Rugby Union rules, Harvard 

convinced American schools to switch to Rugby Union rules where goals were scored by kicking over the 

crossbar. That mode of play was followed from 1876 to 1882. 

 

5. SCORING RULES EVOLVE 

As in Table 1, scoring rules were created for the American and Canadian codes in 1883 and for Rugby Union 

in 1886. The evolution of scoring appears interrelated. At first, a conversion counted more than a try or 

touchdown, but then the conversion became lower scoring soon after. A converted touchdown/try evolved to 

six points and then to seven points in all three codes. Scoring by drop goals, field goals and penalty goals 

evolved to three points in all three codes. 

 Prior to 1883 a player in the three codes could catch a ball inside the 25 yard line, run back, touch the 

ball down in the player’s own in-goal area for a safety and then be allowed to kick away from the 25 yard line. 

From 1876-1882 in the American code, if a game was tied on goals, the team with fewer safeties won. In the 

American and Canadian codes starting in 1883/1884, if a team was responsible for a ball being in its in-goal 
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area and the ball was touched down, that constituted a safety, the other team receive two points and the ball 

had to be kicked to that other team also. The safety rule was intended to reduce delaying tactics.  

 

 Try/Touchdown and Conversion Kick Scoring Safety Rouge 

 R. Union Amer. Canad. R. Union  Amer. Canad. Amer, Canad. Canad. 

Year Try Conv. TD Conv. TD Conv. Drop 

Goal 

Pen. 

Goal 

Field 

Goal 

Field 

Goal 

   

1883   2 4 4 4   5 6 1 2 1 

1884   4 2       2   

1886 1 4     3       

1887          5    

1888 1 2      2      

1890     4 2        

1891 2 3     4 3      

1893 3 2            

1897   5 1          

1903          2    

1904     5 1   4     

1905          3    

1906          4    

1908          3    

1909         3     

1912   6 1          

1948       3       

1956     6 1        

1958   6 1 or 2          

1971 4 2            

1975      1 or 2        

1992 5 2            

Table 1. Evolution of Scoring in Rugby Union, American Football and Canadian Football 

 

 The other scoring rule in Table 1 is of significant historical interest. The Eton Rouge has existed 

under the name “Rouge” in Canadian football since 1883. If a defending team obtains a ball kicked or run into 

its in-goal area by an attacking team and if the defending team touches the ball down, the attacking team gets a 

one-point rouge but the defending team is allowed to kick the ball away, its reward for that maneuver. 

 

6. RUGBY LEAGUE, DOWNS, AND TACKLES EVOLVE 

Professional football began in the American code in 1895, the same year that the professional Rugby League 

separated from the Rugby Union in northern England. Rugby League has maintained an independent scoring 

system ever since, as befits the intention of striking out on its own. Under current rules, a try counts four 

points, a conversion two points, a penalty goal two points and a drop goal one point.  

The American, Canadian and Rugby League codes have evolved systems of play continuity that 

replaced rucks and malls in Rugby Union. In the American and Canadian codes, downs are the number of 

plays required to make a yardage target. If that target is met, additional downs are earned. In Rugby League 

the target is to score in the given number of tackles. Here is the evolution of downs and tackles  

 American Football 

   1882 3 downs to earn for 5 yards  

                1906 4 downs to earn 10 yards 

 Canadian football 

                1887 heeling back is allowed 

                1903 3 downs to earn 10 yards 

 Rugby League 

                1906 play the ball/heeling is allowed 

                1966 4 tackles to score 

                1971 6 tackles to score 
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7. OFFSIDE RULES 

In Rugby Union, Rugby League, American football and Canadian football, offside rules depend generally on 

the position of the ball under certain playing conditions. This contrasts with current Association football 

offside rules that relate to the position of certain numbers of defenders at the moment the ball is played. 

Earlier, offside rules for Eton (1847) and Cambridge (1856) required four defenders. The 1866 FA rules called 

for three defenders while the 1925 FA rules lowered that to two defenders. In 1990, FIFA made the two-

defender rule less strict in that one defender can be even with the player attempting to receive the call.  

 

8. THE FORWARD PASS IS LEGALIZED 

American football had become such a rough sport by 1905 that 18 died playing the sport that year. Players 

would link arms in front of a ball carrier requiring an opposing player to hurtle into the “flying wedge”. With 

three downs to progress five yards, a ball carrier would be thrown forward over attackers. Then President 

Theodore Roosevelt threatened to outlaw football unless the game was made safer. A group of American 

colleges formed what is now called the National Collegiate Athletic Association and that group formed a 

football rules committee. The flying wedge was outlawed, teams were separated by a “line of scrimmage”, 

four downs were used to earn ten yards and the forward pass was legalized. The first legally-completed 

forward pass was thrown in September 1906 from quarterback Brad Robinson of Saint Louis University to 

receiver Jack Schneider. Thus began what has become the most identifiable part of American football. 

Canadian football legalized the forward pass in 1929. 

 

9. AUSTRALIAN RULES AND GAELIC FOOTBALL 

A statue outside the Melbourne Cricket Grounds commemorates what is said to the first Australian Rules 

football game played in 1858 between Scotch College and the Melbourne Grammar school. Prominent in the 

statue is Tom Wills, a referee for that match. Wills was one of the principals in creating that code. To 

understand the mind set of Wills, a brief biography is useful. Wills was born in 1835 in New South Wales, 

grew up with Aboriginals and spoke an Aboriginal dialect. In 1850 he was sent to England to be educated at 

Rugby School. He later played cricket at Cambridge. Upon his return to Australia, he organized a tour by an 

Aboriginal cricket team. He and others created what was to be “A game of our own”.  

Wills would have known of various football codes in England and would have known of an 

Aboriginal sport called Marn Grook in which a stuffed possum skin was kicked into the air. Players would 

leap into the air and catch the skin. The written 1859 Geelong and Melbourne Rules allowed batting the ball, 

kicking the ball and pushing the ball forward with no offside rule, all features of Sheffield Rules. The 1866 

rules introduced two additional vertical “behind” goal posts, one on either side of the vertical main goals posts. 

That created use of the Sheffield Rouge, described earlier. Under current scoring values, a kick through the 

middle posts scores a six-point goal while a kick through either set of outer posts scores a one-point behind, 

basically a Sheffield Rouge. The ball could be carried forward as in Rugby rules. I believe that rules makers 

purposely chose Sheffield Rules to create a non-London/FA game with Rugby rules thrown in to make the 

game unique. An oval ball was chosen. The fair catch/mark was also present in the Australian Rules code, as it 

was in all codes as of 1858, not to be deleted from FA rules until 1863, and in Marn Grook. It is not possible to 

know whether the fair catch was included to be consistent with other known codes or whether it was intended 

to follow Marn Grook. Whatever the actual intention, the quintessential feature of Australian Rules football, 

the high-flying mark, is coincidental to an Aboriginal game.  

By 1888, the Gaelic Athletic Association published rules for Gaelic football that were nearly identical 

to those of Australian Rules football. I believe that both set of rules were purposely based on Sheffield Rules 

so as to be independent of London influence. There were earlier Gaelic football games but no written rules 

exist. Lacking such rules, it cannot be ascertained whether Irish emigrating to Australia brought their game and 

influenced Australian Rules football or that Irish returning to Ireland from Australia changed Gaelic football. 

A spherical ball is used with Rugby-styled, T-shaped goal posts. A kick under the cross bar against a 

goalkeeper scores a three-point goal while a kick over the goal ports scores one point, the counterpart to the 

Sheffield Rouge.  International Rules have been created as a hybrid of Australian and Gaelic codes, allowing 

for matches between those two countries.  
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10. Summary 

The seven football codes of today have interrelated evolutionary histories. Through the early 1800s, there was 

one rough game with few rules but with one ball: a pig bladder later covered with a leather casing. Two paths 

emerged, one with two branches. The public path involved flexible rules and the Sheffield Rouge, played by 

pubs and clubs. That path led to Australian Rules football in 1857 and to Gaelic football in 1888.  The 

schools path, invoking stricter rules and sportsmanship, has two branches. The Eton-influenced branch 

preferred a kicking game with goals scored by kicking under a crossbar, leading to Football Association rules 

(Soccer) in 1863 and the first games played in American football from 1869 to 1875. The other schools branch 

was influenced by Rugby School involving running, with goals kicked over a cross bar. That branch led to 

Canadian football rugby in1861, the Rugby Union in 1871, American Football involving rugby in 1876 and 

Rugby League in 1895. Scoring rules evolved and rules changes evolved to create today’s codes. 

Three important people are connected with the evolution chronicled above. Rules emerged largely 

after 1862 when Richard Lindon invented a rubber bladder, resulting in a spherical ball and an oblong ball, 

requiring a conscious decision to be made between a kicking code and a running code. William Webb Ellis 

was more of a convenient marketing tool thsn a (supposedly) audacious pioneer, when in fact he may only 

have cheated a few steps taking a mark in 1823; an act only mentioned by Matthew Bloxam in 1876, more 

than 50 years after the fact and four years after his death. Australian Tom Wills attended Rugby School and 

shared a skill at cricket with Webb Ellis. Wills helped create a unique Australian Rules game which probably 

spread to Ireland by Irish who had lived in Australia.  

In our day, the codes have come to be described by words from the former All Blacks of New 

Zealand haka, “Ka ora, ka mata”, that is, they are a matter of “life or death” to fans. 
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Abstract 

 

In this research, we investigate the difference in track variations for greyhounds in Australia and 

New Zealand. The purpose is to ascertain what expectations are required to win at certain tracks, and 

a way of discriminating ratings for dogs when they change tracks. Emergent patterns in variations 

are also clear when class of race is considered. A number of interesting findings do emerge, and one 

needs to be careful in catering for a variety of confounding variables. There exists a day effect, a 

function of the class of races on those days; turns have a strong influence; distance is more obvious; 

geography; turf type and quantity of meetings rounds out the variables of influence. Analysis is split 

by track, distance and class, accounting for day effects. The key to this work is the setting of a 

universal basis to generate ratings for inter and intra course relevancy. We exhibit our interface for 

trading, and how having critical information at hand makes the traders life simple. 
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P
ag

e
1

1
1

 

ADJUSTING TRUE ODDS TO ALLOW FOR VIGORISH 
Stephen R Clarke 

Swinburne University of Technology 

sandkclarke@hotmail.com  

 

Abstract 
 

A mathematical model predicting sporting outcomes produces probabilities that sum to one, whereas the 

probabilities implied by bookmaker’s odds sum to more than one. Vigorish or over-round is the excess 

probability that supplies the bookies margin, and could typically range from 2% to over 20%. If the 

probabilities from a mathematical model are to be used for supplying real time odds they need to be adjusted 

for the bookmaker’s vigorish. In the reverse situation, when testing models from past data, bookmaker’s odds 

need to be adjusted so that the implied probabilities sum to one. Schembri et al (2011) discusses two methods 

– normalisation and equal distribution. However neither of these suitably allow for the fact that the margin on 

outsiders is usually greater than favourites. A true price of $1.05 can be reduced to $1.03 for less than 2% 

margin, whereas a $100 true price could be set at $50 for a $50% margin. This paper discusses an alternative 

approach using a power function to transform probabilities. This was successfully used when supplying real 

time odds to a leading bookmarker (Clarke, 2007).  

 

Keywords: Betting, over-round  

 

1. INTRODUCTION 

In some sporting studies we need to estimate the chances of past or future events. Often the only estimates 

available are historical bookmaker’s odds or prices. When these are converted to probabilities they sum to 

more than one. This excess probability is known as the over-round O. This supplies the bookies margin since it 

results in payouts that are less than justified by the true probabilities. An alternative measure used is the 

vigorish V, or proportion of the amount bet that the bookmaker retains from a balanced book. Thus  

V = O/ (1 + O), which in casino applications is called the house percentage. In order to estimate the true 

probabilities the over-round or vigorish needs to be removed so the probabilities sum to one. In this paper we 

also use R, the expected proportion of amount bet that is returned to the punter, where R = 1 – V.  

Two methods have generally been used in the literature. Schembri et al (2011) and Viney (et al) discuss 

two methods – normalisation and equal distribution. Equal distribution merely subtracts an equal amount from 

each probability, whereas normalisation reduces each probability by the same proportion. Thus for two 

outcomes and implied probabilities of P and Q (P+Q > 1, so O =P+Q -1) we have: 

Equal distribution results in p = P - O/2, q = Q - O/2   

Normalisation results in p = P / (P+Q), q = Q / (P+Q).  

So for example in a tennis match where the prices are $4.04 and $1.20, giving implied probabilities of 

0.25 and 0.83 for an over-round of 8% (V = 7.5%, R = 92.5%), equal distribution gives true probabilities of 

0.21 and 0.79 (fair prices of $4.83 and $1.26), whereas normalisation results in 0.23 and 0.77 (fair prices of 

$4.37 and $1.30).  

There are some problems with such approaches. The normalisation method results in probabilities that are 

reduced by a common percentage of V (7.5% in the above example). ie the same percentage is taken from all 

bets. However it is common practice for bookmakers to take a greater margin out of longer priced outcomes. 

Clearly the equal distribution method achieves this, with the outsider’s probability reduced by 16% and the 

favourite by only 5%. However this often goes too far, and can produce negative probabilities, particularly 

when there are several outcomes. For example a horse race with 5 runners at $40, $30, $20, $5 and a hot 

favourite at $1.12 results in an over-round of 20%, which gives non-positive probabilities for the 3 outsiders.  

This paper looks at an alternative. While equal distribution is an additive model and normalisation a 

multiplicative model, here we discuss a power model.  

 

2. ADJUSTING TRUE PROBABILITIES TO ALLOW FOR VIGORISH. 

This problem first arose when providing real time odds for a betting company. A regression model was used to 

produce estimated probabilities for the number of runs scored in an over of cricket. These had to be adjusted to 

allow for the vigorish required by the bookmaker, and the solution to take an equal percentage off all prices 

was considered inadequate. If we wish to return only a proportion R of the amount bet to punters, we need to 

reduce the payout for an event with probability p and a fair price of 1/p to R/p. Since this return must be 

greater than 1, it could only be viable when p <R. So for example, for a return to punter of 80% (house 

mailto:sandkclarke@hotmail.com
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percentage 20%) the shortest price we could adjust would be 1/.8 = $1.25 or 4 to 1 on. Roulette can use this 

system to decrease all fair prices by the same percentage only because it has a high R (97% or 94%) and the 

shortest price bets are even money.  

Unlike roulette, it is common to take a higher percentage from low probability/high payout events. Thus a 

1000 to one shot can be given a payout of $500 for a return to punter of only 50%, while a hot favourite with a 

true price of $1.02 can barely be reduced at all.   

One way to implement this is to give a punter the same return for a double as betting on the two individual 

events.   

Let the payout for an event with probability x be P(x).   

Then if winnings are placed all up on a bet with probability y, the final payout is P(y) P(x) 

Alternatively, since the double has a probability of xy, the payout on that will be P(xy). 

So we want P(xy)=P(x)P(y), and the function satisfying this is the power function P(x) = 1/x
k
 and we need 

k < 1 so the price is reduced, not increased.  

Thus while equal distribution alters probabilities by an additive constant, normalisation by a constant 

multiplier, the power method raises them by a constant power. k depends on the return to gambler R. Taking 

logs we get k = -log(P) / log(x). Thus for a 50/50 bet with a return to punter R the payout will be 2R so  

k = log(2R)/log2. (For a bet with n equally likely outcomes, k = log (nR)/log n ) 

So for example if the return for a 50% bet is R = 90.0%, payout is 2R= 1.8, and k = log(1.8)/log2 = 0.848. 

While this is only exact for 2 equally likely outcomes, it can be used as an approximation. Table 1gives the 

adjusted probabilities and prices obtained using this method for a range of true probability events. The 

expected return to punters is for any bet is xP = x.(1/x
k
) = x

1-k
, equal to 90% for a 50% bet, higher for 

favourites and less for outsiders.   

 

True Fair Adjusted Adjusted Expected 

Probability 

x 

Price 

1/x 

Probability 

x
k
 

Price 

1/x
k
 

Return 

x
1-k

 

0.01 $100.00 0.02 $49.66 50% 

0.05 $20.00 0.08 $12.68 63% 

0.1 $10.00 0.14 $7.05 70% 

0.2 $5.00 0.26 $3.91 78% 

0.25 $4.00 0.31 $3.24 81% 

0.3 $3.33 0.36 $2.78 83% 

0.4 $2.50 0.46 $2.17 87% 

0.5 $2.00 0.56 $1.80 90% 

0.6 $1.67 0.65 $1.54 93% 

0.7 $1.43 0.74 $1.35 95% 

0.8 $1.25 0.83 $1.21 97% 

0.9 $1.11 0.91 $1.09 98% 

0.95 $1.05 0.96 $1.04 99% 

0.99 $1.01 0.99 $1.009 99.8% 

Table 1: Adjusted probabilities and prices using the power method with k = 0.848 

 

With 11 outcomes k = log(11R)/log(11) =0.932 for R = 85% and 0.907 for R = 80%. Table 2 shows the 

resultant prices for a range of bets for a nominal R = 85% and 80%, along with the actual expected percentage 

return to the punter. Note the returns are close to the expected values for values around the average $11.00 

payout. In our application it was felt the adjusted prices obtained were realistic, and the returns were close 

enough to that expected for the formula to be used in real time rather than many tables for varying R.  
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Fair 

Payout 

P 

Nominal R = 85% (k= 0.932) Nominal R = 80% (k=.907) 

Payout  

P
k
 

% return 

P
k-1

 

Payout 

P
k
  

% return 

P
k-1

 

$40.00 $31.15 78% $28.38 71% 

$33.33 $26.28 79% $24.05 72% 

$28.57 $22.76 80% $20.91 73% 

$25.00 $20.10 80% $18.53 74% 

$22.22 $18.01 81% $16.65 75% 

$20.00 $16.32 82% $15.13 76% 

$18.18 $14.94 82% $13.88 76% 

$16.67 $13.77 83% $12.83 77% 

$15.38 $12.78 83% $11.93 78% 

$14.29 $11.93 83% $11.15 78% 

$13.33 $11.19 84% $10.48 79% 

$12.50 $10.53 84% $9.88 79% 

$11.76 $9.95 85% $9.35 80% 

$11.11 $9.44 85% $8.88 80% 

$11.00 $9.35 85% $8.80 80% 

$10.53 $8.97 85% $8.46 80% 

$10.00 $8.56 86% $8.07 81% 

$6.67 $5.86 88% $5.59 84% 

$5.00 $4.48 90% $4.30 86% 

$4.00 $3.64 91% $3.52 88% 

$3.33 $3.07 92% $2.98 89% 

$2.86 $2.66 93% $2.59 91% 

$2.50 $2.35 94% $2.30 92% 

$2.22 $2.11 95% $2.06 93% 

$2.00 $1.91 96% $1.88 94% 

Table 2: Adjusted prices and expected returns for an 11 outcome event  

 

3. ACTUAL HOUSE PERCENTAGES OBTAINED IN PRACTICE. 

Because the house percentage of different bets changes, the overall percentage taken depends on the 

distribution of the probabilities of the particular outcomes, and the amounts bet. Thus for example, we expect 

an event where there are equally probable outcomes to have a different return than one in which there are one 

or two hot favourites and the rest are highly unlikely.    

Expected return to punter = ( bet size * true prob winning * payout )/(total bet) 

 =  ( proportion of pool bet * true prob winning * payout ) 

If punters bet in the same proportion as the probabilities, we have,  

Expected return to punter =   x*x* payout, where x is the probability of an outcome 

(Note for the constant percentage case, payout = R/x, so expected return to punter = R as required) 

Using the power formula, payout = 1/x
k
, so expected return = x

2-k
 

It is easily shown using Lagrange Multipiers that the maximum value of this is R when all x's are equal.   

So assuming n outcomes all with equal probability of 1/n we finally get    

Maximum expected return =  x
2-k

= (1/n)
2-k

=  n.(1/n)
2-k

= (1/n)
1-k

  = R, since  

k = log(nR)/log(n) = 1 + log(R)/log(n) , so log(R) = (k-1) log (n) = log (1/n)
1-k

  

Thus the value used for R is in general a maximum and actual returns will be less than this.  

In the two outcome example this means the target return is only achieved for two equal opponents. Table 

3 shows the true and reduced prices and the expected return to the bookmaker for a balanced book on a two 

outcome event for a sample of markets. The return to the bookmaker only deviates markedly from the 

expected percentage if the outsider is less than a 30% chance. 
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Probabilities of 2 

outcomes 
True Prices Reduced prices 

Return to 

Bookmaker 

0.5 0.5 $2.00 $2.00 $1.80 $1.80 10.0% 

0.4 0.6 $2.50 $1.67 $2.17 $1.54 9.8% 

0.3 0.7 $3.33 $1.43 $2.78 $1.35 9.0% 

0.2 0.8 $5.00 $1.25 $3.91 $1.21 7.7% 

0.1 0.9 $10.00 $1.11 $7.05 $1.09 5.3% 

0.02 0.98 $50.00 $1.02 $27.59 $1.02 1.9% 

0.01 0.99 $100.00 $1.01 $49.66 $1.01 1.2% 

Table 3: Return to bookmaker for a balanced book on a 2 outcome event using Power method to convert 

true probabilities with a nominal vigorish of 10%. 

 

4. ADJUSTING BOOKMAKERS ODDS TO ALLOW FOR VIGORISH. 

The above shows we can use the formula P = 1/x
k
 to adjust prices of events with true probability x to allow for 

a return to punter of R, where k = log (nR)/ log(n). This gives adjusted probabilities that give a return to the 

punter of exactly R when all events are equally likely, but less than this in other cases. 

When used in reverse to remove over-round from bookmakers prices P we have adjusted price = 1/x = 

P
(1/k)

  or Adjusted price = P
k’

 where k’ = log(n)/log (nR) where n is the number of outcomes and R is the return 

to punter = (1- O). However since this only gives the required R for equally likely outcomes, we need to use 

iteration to produce probabilities that sum to 1. This is easily performed in a spreadsheet.  

Consider the prices for a tennis match where published prices are $1.22 and $4.33. This gives implied 

probabilities of 0.820 and 0.231 for an over-round of 0.051 and return to punter R of 0.952 and so k = 0.929. 

The equal probability method distributes the 0.051 equally for probabilities of 0.794 and 0.206 (prices of $1.26 

and $4.88). The normalisation method takes each probability as a proportion of the total for probabilities of 

0.780 and 0.220 (prices of $1.28 and $4.55) Note this is equivalent to increasing each price by the (required) 

same proportion. The power method initially gives probabilities of .807 and 0.206, but these still sum to more 

than one. Using iteration to adjust k to correct this, we obtain k = 0.904 and probabilities of 0.802 and 0.198 

(or prices of $1.25 and $5.05). Clearly this method increases the prices of the outsiders to a greater extent than 

the other two methods. 

In events with a larger number of competitors such as horse racing, the outsiders are at longer odds and 

the over-rounds are much greater than in two person events such as tennis. Table 4 shows the three methods 

applied to a race with 6 runners.  

 

Prices and their 

Implied probabilities 

Calculated True Probabilities Calculated Fair Prices 

Equal 

Distribution 
Normalisation Power 

Equal 

Distribution 
Normalisation Power 

$1.15 0.870 0.828 0.696 0.825 $1.21 $1.44 $1.21 

$5.00 0.200 0.158 0.160 0.110 $6.31 $6.25 $9.12 

$10.00 0.100 0.058 0.080 0.042 $17.12 $12.50 $23.63 

$20.00 0.050 0.008 0.040 0.016 $118.97 $24.99 $61.23 

$50.00 0.020 -0.022 0.016 0.005 -$46.31 $62.48 $215.54 

$100.00 0.010 -0.032 0.008 0.002 -$31.65 $124.96 $558.47 

Total  1.250 1.000 1.000 1.000    

Table 4: Comparison of 3 methods of adjusting prices to remove 20% vigorish 

 

With an over-round of 25% or return to punter of 80% the equal probability method breaks down giving 

negative probabilities for the outsiders. The normalisation method merely reduces all probabilities by 20% 

(increases prices by 25%). Schembri et. al. (2011) concluded that the normalisation method is less effective 

when there is a strong favourite, as too much over-round is given to the favourite. The iterative power method 

with an initial k of 0.876 iterates to k = 0.728 adjusts the favourites to a lesser extent than the normalisation, 

but adjusts the outsiders much more. The power method thus avoids the problems the equal distribution 

method has with outsiders, and the over allocation the normalisation method has with favourites.  
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5. CONCLUSION 

A power method can be used to adjust true probabilities to ones that sum to more than one to allow for over-

round. Used in reverse requires iteration. The method should be considered, as it more truly allows for the 

practice of taking a greater percentage out of winning bets on outsiders than favourites.  
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Abstract 
 

The Kelly criterion (Kelly, 1956) is well known as the optimal path to bankroll growth when exploiting 

probabilistic knowledge of future outcomes. Log-utility maximisation is an exercise in risk management 

performed in portfolio management as well as sports betting. O’Shaughnessy (2012) and Noon (2014) 

extended this to a solution in win-draw-loss markets involving both bet and lay options. 

With the explosion in in-play betting now accounting for over 75% of volume in European markets (Munro, 

2016), there is a need for fast algorithms that manage the bettor’s current position across several different 

correlated markets in each game. 

In high-scoring sports such as Australian Rules Football and basketball, the “line” markets where one team is 

given a handicap move dynamically both before and during play, while the odds (or prices) on each side of 

that line stay relatively constant. A market in which the bettor previously invested – e.g., San Antonio −8.5 – 

may cease to exist as the popular “money line” is adjusted, so it cannot be hedged directly. 

This paper derives a general mathematical expression of the quantity to maximise as a function of past bets 

and multiple live markets, and uses the multi-dimensional version of the Newton-Raphson method to quickly 

identify the correct mix of bets in the currently available markets. This involves (relatively simple) calculation 

of the first and second partial derivatives of the generalised utility function with respect to variables 

representing each market type. 
 

Keywords: Kelly criterion, risk management, Australian Rules Football, AFL, basketball, Newton-

Raphson method 
 

 

1. INTRODUCTION 

Investors have recognised since Kelly (1956) that to maximise the growth rate of their bankroll in an uncertain 

market, they must apportion an amount based on optimisation of log-utility. For more background regarding 

the extended development of this criterion in modern betting and investment markets, please see Noon (2014), 

MacLean, Thorp & Ziemba (2010), and O’Shaughnessy (2012). 

Most published research in this area deals with one moment of decision-making per match, in a largely 

static set of markets. Once the bet has been placed, and the odds available change, further profit or risk-

management is available by taking advantage of the new prices in association with the bettor’s current market 

profile. The simplest example of this is arbitrage, where a punter can guarantee a profit by betting on the 

complement of his existing bet with a finely tuned amount at an increased price; however this is quite different 

to probabilistic utility maximisation, where a partial hedge is more likely to be the optimal strategy.  

 Despite the anomalous legal status of in-play betting
11

 in Australia, bookmakers report increasing interest 

and turnover from punters watching the game and adjusting their bets live. In some European sporting markets 

where it is legal to offer in-play markets on the internet, 75% of all liquidity is now wagered after the sporting 

event has commenced (Munro, 2016). 

 In addition to dynamic odds, the punter is confronted with changing margins. In high-scoring sports such 

as basketball and Australian Rules football, the two most liquid markets in practice are the head-to-head odds 

(H2H) and a “points” line (Line) with roughly even odds, which represents the median expected winning 

margin. These are the most easily understood by watchers of the game, and usually have the lowest overround 

in the bookmaker’s portfolio. The bookmaker generally offers other fixed handicaps simultaneously, such as 

for one team to win by 40 or more points. As the main Line market is updated during the game, if a bettor 

keeps placing bets he can develop a complex portfolio of profits and losses on ranges of scores. For example, 

he may have active bets on Team A to win, Team B to not lose by more than 15.5 points, and Team A to win 

                                                
11 Bookmakers registered in Australia may legally accept bets after the event has started, but only in person or via a voice 

call, not electronically over the internet. This legislation is unique globally, intended to curb problem gambling. It also has 

the effect of suppressing Australian bettors’ exploitation of changing odds and knowledge. 
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by more than 21.5 points, while the new market offers a $1.90 price of either team’s side of a 10.5 point Line 

and $3.75 for Team B to win. Maximising log-utility was never trivial, and it now requires a sophisticated 

formula and algorithm. 

This paper derives that formula and shows that the relatively simple Newton-Raphson method is 

guaranteed to find a solution if it exists. Eklund (2011) previously applied the two-dimensional Newton-

Raphson method to bookmaker’s markets; this paper extends that to multiple dimensions with each dimension 

representing the variable bet size in an available market. 

 

2. METHODS 

KELLY CRITERION AND LOG-UTILITY 

The basic Kelly criterion for a single option on a regular betting market gives the Kelly Bet β as: 

)1(
1

1






M

Mp
      

where M is the team’s market price and p is the gambler’s presumed probability of the team winning. β is 

expressed as a percentage of the bettor’s bankroll, and a bet should be placed if Mp>1. The formula is derived 

by maximising the expected value of W = log(bank) with respect to the bet size x in equation (2): 

)2())1(log( )log()1( xMBpxBp  W    

where B is the initial bankroll. The solution to maximise W here is x = βB.  

In order to develop the general expression for W in a dynamic environment with multiple markets 

available, we partition the result landscape into multiple margin ranges. Any bet that has already been taken, or 

is available, or leads to a changed payout, is included as a boundary of one of these partitions. For example, in 

the example in the introduction, we calculate probabilities pi for each of these scenarios: 

1. Team A wins by more than 21.5 points 

2. Team A wins by between 15.5 – 21.5 points 

3. Team A wins by between 10.5 – 15.5 points 

4. Team A wins by between 0.5 – 10.5 points 

5. A draw (bookmaker pays all H2H bets at half value) 

6. Team B wins 

The nature of this probability calculation is beyond the scope of this paper, but it would generally involve 

Monte Carlo simulation or an estimation of path evolution from the current state of the game to final scores. In 

practice, to counter the risks of the punter overbetting using the Kelly formula (MacLean, Thorp and Ziemba, 

2010), he should include the public’s knowledge as expressed in the market. A Bayesian approach is preferred 

to relying 100% on his own flawed model. 

Bets on markets which are not predicated on the final margin are not considered here, although there can 

be value (and interdependent risk management) available in markets such as half-time margins. Nor are 

“index” bets that scale with the size of the difference from the final result considered, although they could be 

brought into this framework. 

In each partition i, we calculate the static net payout si from all existing bets, which are known for that 

margin range. For each available market, we test whether the smallest possible bet would lead to a marginal 

increase in utility. Those bets xj at odds Mi which have a prospective positive effect are included in the formula 

and collated as vector variable x. 

This leads to the log-utility 

)3())1(log(
,

 
ji

jjijii xMsBp  W    

where δij is 1 if bet xj is successful in partition i, 0 if bet xj is a loser in partition i, and may have other 

values such as 0.5 if the partition would result in a part-payout. If the bet is in an exchange market such as 

Betfair with a tax t, then for a winning partition δij = 1 – t (Mj – 1) / Mj 

We now seek to maximise W(x). 

 

NEWTON-RAPHSON METHOD 

Note that each term of (3) is a concave function and therefore the sum W(x) is concave (i.e., -W(x) is convex 

with each second-derivative strictly positive ∀xj). This makes maximisation especially amenable to the root-

finding method of Newton and Raphson. Noon (2014) questions this convexity when the punter uses a betting 

exchange with multiple options, such as win-draw-loss as discussed in O’Shaughnessy (2012) which 

introduces a Heaviside function and therefore loses its differentiability. Noon uses a computational 

approximation to Heaviside which spoils the convexity, however I note that the only effect of the discontinuity 
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in the derivative is to introduce a single instantaneous decrease in gradient of the function where it changes 

from loss to profit in that market, and the function W remains piecewise continuous and wholly concave. 

Walking through the Newton-Raphson method, we need to iterate the following algorithm until the 

solution is virtually stationary. The starting point xc = x0 = 0 seems to work well enough. 

1. Construct the Jacobian J at xc using the second-derivatives of W, for example in two dimensions 
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2. Calculate the gradient vector 
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3. xcʹ := xc – J
 -1 ∇W 

4. Eliminate any xi < 0 to reduce the dimensions of the search space as we cannot bet a negative amount 

5. If | xcʹ – xc | < ξ   (ξ small), xcʹ is accepted as the solution; otherwise xc := xcʹ 

 

Partial derivatives of W are presented here: 
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3. RESULTS 

IMPLEMENTATION 

The algorithm was implemented in PHP on a Unix webserver and runs in a live environment for all AFL 

matches for TedSport (see Acknowledgements). Solutions, if they exist for the two best available markets, are 

generally found within six iterations of Newton-Raphson and presented to the user within 100 milliseconds. 

The user is able to add as many H2H or Line bets as she likes and is shown her current market position. 

Full profit results are not available at this time as individuals are often unable to place a real bet of the 

requested size with bookmakers, due to physical and time limitations imposed by the legislation. However the 

pre-match suggested bets using this risk-management algorithm and a forecasting model built with TedSport 

KPIs are currently (as at May 15
th

 2016) showing a 20.2% return
12

 on investment (ROI), displayed in Figure 1 

as designed by TedSport’s Glenn McLeod: 

 

                                                
12 This is calculated from a constant bankroll of $10,000, staking a total of $31,850 across eight weeks for a profit of 

$6,446. Past returns are no guarantee of future profits, and even the best systems generally regress to under 10% ROI in the 

long term 
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Figure 1: Results of Risk Management Algorithm in AFL 2016, based on a fixed bankroll of $10,000 

 

4. DISCUSSION 

Many punters with excellent knowledge of their sport are unable to convert that expertise into profit due to 

mismanaged staking strategies. Opportunities for a prediction model in-play against bookmakers are 

developing, especially in a relatively isolated sport such as Australian Rules football. The ability to 

continuously add bets to the bettor’s portfolio that increase their expected bankroll (or its utility) should be of 

value. 

Noon (2014) develops the other side of the Kelly equation and uses it to advise bookmakers how they 

should set their markets, and how punters should present stakes for matching on exchanges. Potentially this 

paper’s root-finding technique is also amenable to those optimisation problems. 

It should be noted that the algorithm’s staking strategy is unlike human strategies, where the punters are 

risk-averse – they tend to hate losing money more than they like winning it, as noted by Kahneman (2011) 

among others. The algorithm can manage a portfolio in-game to a guaranteed small loss for instance, in order 

to avoid debilitating losses. This could be a barrier to uptake, or a utility function that reflects human risk-

reward behaviour could be developed. 

 

5. CONCLUSIONS 

This paper has presented a general formula for dynamic risk management in a live sports betting market, and 

demonstrated that a unique solution is calculable within a short time as the odds, scores and live information 

change. Results and profitability – naturally depending on a high-quality forecasting engine – are encouraging 

in the first few months of the implementation. 
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Abstract 
 

This paper explores factors contributing to the variance in pre-match and in-play T20 cricket team runs 

projections. Pre-match runs projections for Team A (RA) and Team B (RB) are mostly dependent on venue and 

weather effects, and a predicted winning margin, estimated from the pre-match win probability for each team. 

As well as guiding pre-match betting on total runs markets, RA and RB act as weights for the in-play runs 

projections and match odds calculation, with decaying influence as the match progresses. Differences between 

observed and expected team runs totals, Diff(Ri) = Obs(Ri) - Exp(Ri), for team i, seem to be mostly influenced 

by physical conditions, including the state of the pitch, and player performance. Of particular interest to this 

research was whether to revise RB, given RA at the completion of the first innings; specifically, whether 

significant +/- Diff(RA) at the change of innings was the result of good/difficult batting conditions or 

above/below expected player performance. The former suggests RB should also be increased/decreased; the 

latter is more complicated and requires a statistical interrogation of A’s batting and the skill through B’s 

potential batting line-up and A’s bowling attack, prior to any RB adjustment. The paper then demonstrates the 

value in addressing RA and RB by comparing an in-play profit statement from the recent ICC T20 tournament, 

to a simulated one should the runs projections have been held constant.  

Keywords: T20 cricket, team runs projection, in-play betting 
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Abstract 
 

There are a small number of applied ratings systems currently in operation in PGA golf. The most well-known 

would have to be the Official World Golf Rankings (OWGR), which is an example of an accumulative player 

rating system. Each ratings system has been developed to measure one particular aspect of player performance, 

be it expected difference in scores, such as in Sagarin Ratings, or the accumulation of tournament success, 

such as in OWGR. This research had two aims when developing a ratings system; the first was to measure the 

variation in player performance between rounds, and the second to determine a recommended sample size for 

performance analysis. A moving average based rating system was developed using all tournaments from the 

2012 through 2015 PGA Tour seasons. The system used a relative measure of performance taken to be the 

ratio of player round score to average field round score. Model fits were very encouraging with adjusted R
2
 

measures consistently above .98. An algebraic manipulation of ratings equations showed that roughly 94% of 

variation in performance could be explained using a long-term measure of player strength, which can be 

defined as predominantly comprising scores greater than five rounds previous. The remaining 6% was 

described using results from more recent rounds, no more previous than four rounds back. Varying the total 

number of samples showed that a balance of predictive accuracy and minimisation of included samples 

occurred when a total of 20 rounds were used. Accuracy is seen to increase with the inclusion of more samples 

but plateau once 20 have been included. Results from this research provide a foundation for longitudinal 

analysis of performance in golf tournaments. 
 

Keywords: PGA, golf, player ratings, sample size 

 
1. INTRODUCTION 

In recent years player ratings modelling has gained recognition as a medium between statistical research and 

end users in the form of fantasy league competitions. Player ratings give us a way of comparing the ability of 

players across different eras that don’t necessarily compete against each other directly. 

(Stefani 2010) provides an overview of ratings systems in sport. He notes there are three forms ratings 

systems can take, which include subjective, accumulative, and adjustive. Subjective systems involve the 

subjective awarding of points from referees or judges, as is the case for most martial arts competitions. 

Accumulative systems use the accrual of points awarded based on performance over several competitions and 

provide rankings for players or teams based on their current cumulative totals. Adjustive systems modify 

ratings between each competition based on some adjustment factor and the difference in the observed and 

predicted performance for a player or team. In this way adjustive systems are favoured in sports where future 

performance is to be predicted because ratings can increase or decrease based on the form of the player or 

team. This work has been expanded to include a survey of systems used in several international competitions 

in (Stefani 2011) and further to evaluate the predictive performance of a range of examples of each of the three 

types of systems in (Stefani 2012). 

Perhaps the most well recognised rating system in golf is the Official World Golf Rankings (OWGR), 

which is an example of an accumulative system. Tournaments from a range of eligible international level 

professional tours are allocated rating points that players can earn based on their finishing position in a 

tournament field. The points available are determined by the importance or prestige associated with the status 

of a tournament (so that flagship events for example are allocated relatively more points) and influenced by the 

strength of the playing field, which changes based on the composition of world ranked top 30 and top 200 

players competing within any given field. Ratings are weighted averages of results from the previous two 

years of competition with greater weights assigned to the most recent 13 week period. The OWGR have been 

used in a number of studies as a means of controlling for player strength in predictive modelling, as in (Nevill, 

A. M., et al 1997), where it was utilised to show there was insufficient evidence to suggest that home ground 

advantage was present in US and European golf tournaments. 

Research has also been conducted into validating the OWGR as a ranking system, an important 

assumption that should be valid when used in predictive modelling. (Broadie and Rendleman 2012) sought to 

determine if rankings were biased by comparing the likeness of rankings between similar players from 
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different professional tours. They claim that similar players from different tours should be similarly ranked if 

the system is not influenced by any bias. They used two unbiased methods for measuring scores, the first was a 

standard fixed effects regression model and the second another ratings method called Sagarin Ratings. Sagarin 

Ratings uses a player’s won-lost-tied record against all other players within a tournament field to estimate the 

difference in typical round scores between players. Results are a reflection of the previous 52 weeks of 

performance, adjusting for the difficulty of a tournament with regards to the tournament field and the difficulty 

of a player’s individual schedule. Results indicated that the system was biased against PGA Tour players, 

penalising them on average 26-37 OWGR ranking positions compared to non-PGA Tour players. 

Other predictive rating systems exist that are used to predict relative measures of score as opposed to 

predicting actual scores. (Minton 2012) developed a rating system using the Strokes Gained metric, 

popularised by Mark Broadie in publications such as his book Every Stroke Counts, which uses an assessment 

of the quality of each shot to rate and infer performance. 

The aim of this work is to determine the influence of sample size on the effectiveness of a predictive 

modelling system. Ideally there would be a balance between too few and too many inputs when gauging player 

performance over time. This has been investigated previously by (McHale and Forrest 2005) using an ordered 

logit forecasting model. They used tournaments from the 2003 US PGA Tour and the then current OWGR 

rankings to predict scores. Their results indicated the six most recent performances are the best indicators of 

future performance, and attributed this result in part to the OWGR rankings heavily favouring more recent 

performances. In this work we take a slightly different approach to solving the problem and arrive at a similar 

conclusion. 

We organise the research aims into three research questions: 

1. Is the size of predictable variation in sequential performances independent of player strength? 

2. Is the size of predictable variation in sequential performances independent of tournament round? 

3. Is there an optimal number of samples to include when developing a ratings model for golf 

performance? 

 

2. METHODS 

The methods section is comprised of three subsections. The first defines the performance metric of interest, the 

second explains the formulation of ratings models, and the third details the data used for the analysis. 

 

2.1 MEASURING PLAYER PERFORMANCE 

Round score ratios, calculated as player round score to field average round score, were chosen as the 

performance metric for this analysis. Typically fixed effect regressions are used to account for external effects 

like tournament difficulty a playing field, as in (Connolly and Rendleman 2008). If we assume however that 

tournament effects are similar across tournament fields, taking the performance ratio provides the measure of 

relative performance that lends itself to ratings systems. It is generally assumed that round scores are normally 

distributed, as previous work in score simulation (O’Bree, Bedford and Schembri 2012, O’Bree and Bedford 

2014), performance modelling (Zumerchick 2008), and handicap optimisation (Swartz 2009) have suggested. 

However when performing this analysis regressions with normalised round scores provided poor adjusted R
2
 

values so performance ratios were used instead. We define αi,j to be the ratio of round score xi for player i in 

the j
th

 tournament round to the field average round score   ̅. 

 

     
    

  ̅
 

 

2.2 THE RATINGS MODEL 

We define the ratings model to be the linear regression equation of the sum of the m previous ratio round score 

moving averages. 
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The model equation is found using forward selection regression to keep the final model as simple as possible. 

We can manipulate the final equation knowing the average ratio score is equal parts of all included ratio scores 

to express the predicted score as a weighted average of previous scores without the any sort of moving 

average. For example, assume a final model equation that comprises the two and three point moving averages: 
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The equation can be transformed to be represented as a function of only the previous performances, not 

moving averages of previous performances: 
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In this way, we can assess the change in final equation when increasing the size of m, allowing us to gauge the 

relative influence of previous scores as we include more and more previous samples. 

 

2.3 DATA 

Data for this research was sourced from publicly published scorecards from PGATour.com. The database 

contains all round scores from all standard medal-play tournaments from the 2012 through 2015 US PGA Tour 

seasons. A total of 69,599 scores were included in the analysis, with 170 incomplete rounds excluded. 

Standard tournament information accompanies the scores, including tournament name and round, as well as 

information regarding whether the tournament had a cut. 

 

3. RESULTS 

The results have been divided into three subsections. The first looks at regression results across all data. The 

second looks at regression results controlling for a simple measure of current player ability. The third looks at 

the results when controlling for the number of rounds remaining in the tournament. 

There was a consistent trend that existed in final model equations as progressively more samples were 

included. When more than four previous performances (m>4) were included in a regression, the resulting final 

equation always took the form 
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Where a total of m previous performances were made available in the regression. The first term included 

was always the m point moving average, and was only ever followed by the four point moving average. The fit 

of the regression model was never improved with the inclusion of the four point moving average but was 

always included due to statistical significance. Models fits were consistently exceeding .98 adjusted R
2
 values. 

 

3.1 THE GENERAL RESULT 

The majority of the variation in current performance was explained by the long term moving average, as 

shown in Figure 1. The component was found to explain at least 94% of variation in current performances, 

with the proportion decreasing as more samples were included in regression. 

Figure 2 shows the influence the four most recent performances have on current performance. The curves 

indicate that when eight or less previous performances are included, most of the variation in current 

performance can be explained using the four most previous performances t-1 through t-4. When nine or more 

are used, most of the variation is explained using the less recent performances (t-5 and older). This result 

suggests that when short of previous performances (less than nine), or when there are interruptions in a 

player’s schedule, the best guess is based primarily on the last tournament played (or two tournaments if the 

player missed the cut). 

 

3.2 CONTROLLING FOR PLAYER STRENGTH 

The long term measure explains current performance best, but is this influenced by player ability? 

Figure 3 shows what happens when we account for short term player strength. Players are divided into 

one of 10 equally sized groups based on their most previous round performance. Each group represents 10% of 

possible range of performance values, so that each group represents player strength in increments of 10% of all 
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players. For example, say a player’s previous performance saw him achieve a score ratio of 0.93, which for 

instance translates to the 23
rd

 percentile of the score ratio distribution. This player would be allocated to group 

3. Assessing the explained variation in current performances by these groupings shows the effects on model 

coefficients for the most recent four performances. 

When the number of performances included was small (less than nine), the better players (groups 1, 2, 

etc.) had negative variance differentials, indicating less variation in current performance was explained by the 

last four performances when compared with the standard result across all players. The weaker players (groups 

10, 9, etc.) mirrored this trend, with the previous four performances explaining more variation in current 

performance. 

 

3.3 CONTROLLING FOR TOURNAMENT ROUND 
The progression of a tournament could also see changes in the influence of previous performances. In the same 

way the effect of player strength was noted on the influence of the four previous performances, Figure 4 shows 

the effect of the tournament round expressed as the number of rounds remaining in the tournament. The graph 

shows that following the cut the influence of the previous four performances increases, while earlier rounds 

can be seen to have less influence. Interestingly, when more performances are included in the regression 

(moving averages span more performances) the effect of the tournament round decreases in size. 

 

4. DISCUSSION 

When determining exactly how to generate a ratings system the design relies heavily on the way the 

performance of the subject can vary over time. If performances vary greatly between competitions it can be 

difficult to find trends in individuals or teams that yield a means of measuring strength because of 

overwhelming noise in measurements. Conversely, if there is too little variation between competitors within a 

competition or between competitions, there is little use for ratings systems. 

Results from this work have shown that when measuring relative performance of golfers over tournament 

competition that player performance is predictable using moving averages of previous performances 

represented as score ratios. Expectations for the current performance of a player are largely predicted using a 

long term moving average of these previous performances. 

The base level model coefficients were found to vary amongst players of different strength and different 

levels of progression through a tournament. The stronger players tend to be more predictable using long term 

measures of their strength, while the weaker players tend to be more predictable when their most recent 

performances are analysed. This is likely due to the fact that better players are typically more consistent 

amongst multiple rounds and are successful because their skills are better developed and can handle the 

pressure of performing well across entire tournaments. The difference between coefficients dependent on 

player strength suggests that when developing ratings models the strength of the player needs to be considered. 

The base level model coefficients were also found to vary throughout rounds within the same 

tournament. The influence of the previous four performances on model coefficients was found to increase as 

the tournament progressed. This does not come as a surprise. Typically tournaments have a cut after two 

rounds, meaning the better half of the playing field (for the current tournament) remain, so we can assume 

each player is playing well (or at least, better than average across the entire field). To be successful however 

you need to be one of the better players of the better half of the field, so your likelihood of a good performance 

is best determined by how well you’ve played in the previous rounds of the current tournament. As was the 

case with player strength, the recommendation here would be to vary any components of a ratings model that 

change ratings by the progression of a tournament, given the effect of tournament round is evident. 

With regards to a recommended sample size, a rating system that includes 20 or more previous 

performances would see the benefits of the convergence of the proportion of variance explained by particular 

components; however there are certainly benefits to using smaller sample sizes (four or less) given player 

strength and tournament progression. 

 

5. CONCLUSIONS 

The results of this analysis have shown that the influence of previous performances on current predicted 

performance vary as a result of the number of performances included, the strength of the golfer, as well as the 

progression of the tournament. The structure of a ratings system in golf performance should therefore include 

these variables in its design. 
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Figure 1. Explained variation in performance t from the moving average 

MAm of each model comprising m total performances 

Figure 2. Explained variation in performance t using performances t-1 

through t-4 

  
Figure 3. The effect of player strength on explained variation in performance 

t using performances t-1 through t-4 

Figure 4. The effect of tournament round (rounds remaining) on explained 

variation in performance t using performances t-1 through t-4 
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Abstract 
 

Conventional wisdom on success in tournament golf tends to suggest an element of luck is required in most 

winning campaigns. For such a view to exist there needs to be a degree of uncertainty in current and final field 

position for players in the hunt to finish on top after four rounds of tournament competition. There a numerous 

questions one could answer in an effort to determine firstly if this is true, and if so, why it is true. A rather 

simple question though could be: what is more important, your position within the field or your ability as a 

player? The aim of this research was to determine the relative importance of position and ability-based 

variables when predicting tournament success on the US PGA Tour. A range of variables related to changes in 

position within a tournament field as well as simple player rating models were included in an initial linear 

regression to predict final tournament rank. The initial regressions were run for all tournaments from the 2012 

through 2015 PGA Tour seasons and showed adjusted R
2
 values ranging from 0.75 to 0.99 in final tournament 

ranks. While the predictive accuracy of the simple regression was promising, there remained the seemingly 

obvious issue of correlated predictors. As a result Principal Component Analysis (PCA) was used to condense 

the large number of correlated predictors into a smaller number of uncorrelated variables. PCA results reduced 

the large set of predictors into two components and accounted for approximately 85% of total variation in final 

tournament rank. The first component accounted for around 60% of predictable variation and comprised 

primarily of position-based variables. This result indicates position is in fact more influential on tournament 

success than player ability, though for this result to be concluded further analysis is required. This research 

helps to establish a means of simplifying predictive models in golf. 
 

Keywords: PGA, golf, prediction, tournament success, principal component analysis 
 

1. INTRODUCTION 

It can be thought in general that a successful professional golfer is someone who not only plays well during 

tournaments but occasionally wins them. There are some tournaments that are much more acclaimed than 

others – for example, the four major tournaments in the US PGA Tour. Success has been seen by some as a 

purely money driven cause, where the player who earns the most has been the most successful. Usually though 

the success of a player relates to how many professional tournaments they’ve won. 

Conventional wisdom on success in tournament golf tends to suggest an element of luck is required to 

beat an entire tournament field. For such a view to exist there needs to be a degree of uncertainty in current 

and final field position for players in the hunt to finish on top after four rounds. 

A substantial amount of performance modelling in golf can be seen to focus on creating standards in 

performance statistics that correlate well with success. A number of studies have focussed on determining the 

more important performance statistic between driving distance and driving accuracy (having your ball land on 

the fairway once driven from the tee), as in (Hellstrong, Nilsson, & Isberg 2014).  Ketzscher & Ringrose 

(2002) studied the use of summary statistics collected by the Professional Golf Association European Tour for 

predicting player success and concluded that golf was too complex for this to be achieved. Similarly, James 

(2007) concluded that the current performance indicators needed to be improved upon. 

The research into these performance statistics provides interesting findings with regards to how statistics 

relate to scoring, but they don’t provide the means for actually predicting success in terms of ranking as highly 

as possible. It isn’t always the best player for the day in terms of putting who wins the tournament, or the 

player who hits the furthest average drive over the span of the tournament. Little of the research is concerned 

with using a player’s position within a tournament field to predict success. 

This work builds off of previous work by O’Bree & Bedford (2015) into using a player’s tournament 

rank to predict player success at the end of a tournament. In this previous work, the profitability of wagering 

on outright tournament winners was examined using position-based variables to create final ranking 

probability distributions. The problem with these position-based models was that they could only be used 
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independently; their predictive power couldn’t be combined to enhance the predictability of final tournament 

outcomes. This was the result of the position-based variables being strongly correlated; they measure slightly 

different things but are essentially the same variables. Research into cricket performance by Manage & 

Scariano (2013) has addressed the issue of correlated predictors by utilising Principal Components Analysis 

(PCA). Their PCA facilitated the ranking and prediction of performances of both bowlers and batsmen in the 

2012 Indian Premier League competition. The aim of this work is to assess the principal components of a 

range of position-based and ability-based variables to determine how much predictable variation in final 

tournament ranking can be retained while minimising the number predictive model inputs, all while 

accounting for the problem of the predictors being correlated. 

 

2. METHODS 

There are a number of ways to measure a player’s position within a tournament field. To be able to best use 

predictive models we should have the best idea about the position of a player. We can use the distribution of 

scores within a field to gain insight into the context of a player’s rank. The variables used in this analysis take 

three different forms: 

 

 Field Rank: The rank of the round score for any individual round across all players, as well as the 

cumulative field rank of the player as a tournament progresses. For example, Adam Scott achieved 

the best round score in the second round and is currently ranked first in the field for the tournament. 

 

 Shots Differential: The player’s round score compared to course par score, compared to the field 

average round score, and compared to the field leader’s score, for individual tournament rounds, and 

cumulative differentials as a tournament progresses. For example, Jordan Spieth scored a round of 69 

on a par 72, while the leader achieved a score of 67 and the average field score was 73, giving his 

differential set of scores of {-3, -4, +2} respectively. 

 

 Score Ratio: The ratio of the player’s score to the course par, field average, and field leader’s score, 

for individual tournament rounds and cumulative differentials as a tournament progresses. Taking 

Spieth as another example, his ratio score set would be {
  

  
      

  

  
      

  

  
     }. 

 

Each variable is assessed at the conclusion of each day’s play (between each round). 

To estimate changing player strength across multiple tournaments, moving averages of each of these 

variables are taken across the previous five, 10 and 20 tournament rounds. The PCA will be conducted using 

the current position of a player and the player strength variables from one of the five, 10 or 20 round moving 

averages. These moving averages variables represent the measures of player strength. 

Linear regression will be used to initially evaluate the predictability of final tournament rank using these 

variables, and accompanied with a correlational analysis of the variables with each other and with the final 

tournament rank. 

All analysis will be conducted using all medal-play tournaments from the US PGA Tour seasons 2012 

through 2015. 

 

3. RESULTS 

The results of the analysis will be divided into two subsections. The first will show the basic results from the 

linear regression analysis of the position and ability variables. The second will show the effect of the data 

reduction procedure through the PCA results. 

 

3.1 LINEAR REGRESSION ANALYSIS 

It comes as no surprise that the position variables were found to have reasonably strong correlations with final 

tournament rank. Figure 1 displays the strength of correlations by tournament round. It is clear that in each 

analysis the strong correlations are present between the measurements of position relative to the field average 

with final tournament rank, and that in each case correlations predictably become stronger as the tournament 

progresses. Figure 2 displays the correlations between the player-ability (moving average) variables from the 

last round of standard four round tournaments and final tournament rank. The same trend in the strength of 

correlations between variables exists as in Figure 1, and we observe that as moving averages include more data 

points the strength of the correlations weaken. 

The linear regression analysis provided positive results in terms of predicting the final tournament rank of 

a player. Table 1 displays the adjusted R
2
 model fits for each regression. In each case most of the predictors 
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were statistically significant at the .05 level and model fits were very promising ranging from 0.75 for 

regressions using positions following the first round of the tournament to 0.99 for regressions conducted using 

round four positions. Clearly, multicollinearity is an issue in this analysis, as evidenced by the strong 

correlations between predictors in Table 2. 

 

3.1 PRINCIPAL COMPONENTS ANALYSIS 

The principal components analysis provided good insight into what influences tournament success, as 

demonstrated in Table 3. In general, the first principal component explained roughly 60% of variation amongst 

the variables. Adding the second increased this proportion to around 85%, and in each instance over 90% of 

variation is accounted for by the first three components. Interestingly, the benefit of greater progression 

through the tournament (the current round being later) only improved the performance of the first component, 

boosting the proportion of explained variation in final rank by between 9% and 16%. There was virtually no 

improvement to the second or third components, meaning the first two components account for any 

explanatory power that is to be gained as the tournament progresses. Similarly, when the first two components 

are paired together, explained variation in final rank across the different player-ability models (the three 

moving average models) was essentially the same. These results suggest that extracting the first two 

components provides enough explanatory power that the tournament round and player ability have no effect on 

model selection. 

In an attempt to determine the answer to the main research question, Table 4 summarises the model 

coefficients for the first two components for both position and player-ability variables. We observe that most 

coefficients are positive, and that coefficients are much smaller for player-ability variables than for position 

variables, particularly in the 10 and 20 point moving average models. These coefficients are very close to 0 in 

essentially all variables for the two models with the greater number of samples included, which suggests that 

the scores determined by the principal components are virtually independent of player ability. Clearly, this 

indicates that position is more important to tournament success than player ability. 

 

4. DISCUSSION 

The aim of this work was to further develop a current rank-based approach to predicting tournament success. 

Initially, the approach involved using foundational models to evaluate the profitability of a wagering strategy 

in professional golf that utilised outright winner market prices. The main issue with these models was that they 

could not be used concurrently due to multicollinearity in model predictors. 

A correlational analysis of these variables showed they provide reasonably strong insight into how 

successful a player is likely to be in the form of better final tournament rank. A principal component analysis 

of the variables themselves showed that a substantial proportion of variation in the set of variables could be 

summarised using only two or three components. An analysis of the component structures showed a strong 

dependency on the position-based variables, indicating that position within a tournament field is more 

important to success than player ability. 

These results have the potential to contest the current direction research into predictive modelling in golf 

is currently taking. In the majority of predictive research the player-specific performance statistics are used to 

provide insight into how well a player is performing within a given tournament field. As is the case with sport 

however, the best players and teams don’t always win. Mentioned frequently in literature is the element of 

luck with succeeding in golf, even for the most highly skilled player (Connolly & Rendleman 2008). So one 

could question the usefulness of considering random predictors (such as fairway accuracy) over using fixed 

predictors, such as a player’s rank or the number of shots they trail the leader by. The fixed predictors provide 

insight that remains standardised across different tournaments and different situations, something that you can 

more safely rely on. Even if greens in regulation (the proportion of holes where a player reaches the green in 

expected shots, equal to hole par less two putts) correlates strongly with scoring, it would need to correlate 

more strongly than the fixed position variables to be of use when determining the winner of the tournament 

ahead of time. 

If there is benefit for using these performance statistics, it is to add context to the player’s performance. A 

tournament leader that has five players trailing by a single shot is in much greater danger of surrendering his 

lead than does a leader who is eight shots ahead of the second ranked player, regardless of their respective 

strokes gained or putts-per-hole statistics. Primarily, tournament success should be measured as a product of 

players being in the strong positions at the right time in the tournament. Certainly in the early stages of the 

tournament, we only really have access to measures of player ability to provide evidence to back any claims 

we make about who the eventual winner of the tournament will be, but once holes have been completed 

position becomes king. 
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5. CONCLUSIONS 

Results from this work have shown that a player’s position within a tournament field is a better predictor of 

tournament success than longitudinal estimates of their strength as a player. 
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Figure 1. Strength of correlation between current tournament position variables and final tournament rank. All 

correlations were statistically significant at the .001 level. 

 

 

 
Figure 2. Strength of correlation between round four player-based moving average variables and final 

tournament rank. All correlations were statistically significant at the .001 level. 

 

Linear Regression Model Adjusted R
2
 

Tournament 

Round 

5 Point 

Moving Average 

10 Point 

Moving Average 

20 Point 

Moving Average 

One 0.75 0.76 0.76 

Two 0.81 0.81 0.81 

Three 0.89 0.90 0.90 

Four 0.99 0.99 0.99 

Table 1. Standard linear regression adjusted R
2
 values 
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Position Variable Correlations 

 

Shots 

Diff 

Par 

Shots 

Diff 

Field 

Shots 

Diff 

Leader 

Shots 

Ratio 

Par 

Shots 

Ratio 

Field 

Shots 

Ratio 

Leader 

Field 

Rank 

Shots Diff Par        

Shots Diff Field 0.68       

Shots Diff Leader 0.54 0.83      

Shots Ratio Par 0.86 0.68 0.61     

Shots Ratio Field 0.54 0.87 0.77 0.76    

Shots Ratio Leader 0.56 0.55 0.43 0.58 0.54   

Field Rank 0.58 0.77 0.63 0.67 0.77 0.69  

Table 2. Correlation matrix for position variables. All correlations are significant at the .0001 level. 

 

 

 

 

Cumulative Proportion of Explained Variation 

in Final Tournament Rank by Principal Components 

Tournament 

Round 

5 Point Moving Average 10 Point Moving Average 20 Point Moving Average 

PCA 1 PCA 2 PCA 3 PCA 1 PCA 2 PCA 3 PCA 1 PCA 2 PCA 3 

One 0.606 0.871 0.921 0.559 0.867 0.920 0.529 0.871 0.920 

Two 0.627 0.831 0.910 0.569 0.832 0.907 0.535 0.837 0.905 

Three 0.701 0.827 0.915 0.622 0.833 0.913 0.579 0.841 0.912 

Four 0.765 0.868 0.930 0.674 0.836 0.926 0.619 0.847 0.925 

Average 0.675 0.849 0.919 0.606 0.842 0.917 0.566 0.849 0.916 

Table 3. Cumulative explained variation in final tournament rank by tournament round 

 

 

 

Combined PCA 1 and PCA 2 Coefficients 

Position Variable 

5 Point 

Moving Average 

10 Point 

Moving Average 

20 Point 

Moving Average 

Position Ability Position Ability Position Ability 

Shots Differential to Par 0.71 0.65 0.52 0.06 0.51 0.04 

Shots Differential to Field 0.15 0.11 0.54 0.02 0.55 0.01 

Shots Differential to Leader 0.17 0.13 0.56 -0.01 0.56 0.01 

Shots Ratio to Par 0.71 0.65 0.52 0.06 0.52 0.04 

Shots Ratio to Field 0.15 0.11 0.54 0.02 0.55 0.01 

Shots Ratio to Leader 0.14 0.08 0.55 -0.02 0.55 0.00 

Field Rank 0.09 -0.02 0.50 -0.10 0.51 -0.05 

Table 4. Combined Principal Component coefficients by Position and Player-Ability variables 

 

  



 

P
ag

e
1

3
4

 

USING A BROWNIAN MOTION TO CALCULATE THE IMPORTANCE 

OF POINTS IN BASKETBALL 
 

Michael de Lorenzo 
a, b

, Ian Grundy 
a 

 
a School of Science, RMIT University, Melbourne, AUS 

b Corresponding author: s3285802@student.rmit.edu.au 
 

Abstract 
 

Particular moments during a game of basketball can affect a team’s probability of winning. Often, a player’s 

performance can be subjectively scrutinised for their ability to perform during these critical moments. 

However, identifying the moments that are most critical to a team’s chances of winning can be difficult. In this 

paper, we attempt to quantify the importance of points during a basketball game using a Brownian motion. 

Closely related to a random walk, and originally used to model the random motion of particles suspended in 

fluid, Brownian motion has been found in past research to provide a reasonable estimate of the win probability 

of a team during a basketball game, given the time remaining and the difference in score. By adjusting these 

probabilities and using an existing definition of point importance from tennis, it is possible to calculate the 

importance of particular points during a game of NBA basketball. Results from games across six seasons of 

NBA basketball suggest that the point importance can be reasonably quantified by using the Brownian motion. 

Furthermore, the point importance can be broken down into the importance of scoring the next one, two or 

three points. An exploration of these three components indicate that the three-point shot always has a greater 

importance than either a one-point shot or a two-point shot. We believe that the knowledge of point 

importance in basketball could be an effective tool in evaluating player performance. 

 

Keywords: Point importance, basketball, Brownian motion, probability 
 

1. INTRODUCTION 

Particular moments during a game of basketball can have an effect on a team’s probability of winning. These 

moments can occur early in the game if the match-up is lopsided or towards the conclusion of the game if the 

contest is close. Quantifying the importance of scoring the next point or points can help determine which 

moments are most critical during a basketball game. Knowledge of how important certain points are in a game 

of basketball could help coaches and team managers identify players who either perform well or struggle 

during key moments of a game. 

In past research, point importance has been thoroughly explored in tennis, where it has been defined as the 

difference between two conditional probabilities: the probability that the server wins the current game given 

they win the next point, minus the probability that the server wins the current game given they lose the next 

point (Morris, 1977). González-Díaz, Gossner, and Rogers (2012) used this definition to assess tennis player’s 

ability to perform when the stakes are high. It was found that there is a significant relationship between a 

tennis player’s career success and their ability to win important points. The point importance definition by 

Morris (1977) has also been adapted into other sports such as badminton, where point importance has been 

explored in order to determine a serving strategy (Ladds & Bedford, 2010). 

In basketball, there exists little research on measuring point importance. One paper by Goldman and Rao 

(2012) determined the importance of points during a game of NBA basketball using a differentiation of a 

normal distribution function in order to assess the effect that pressure may have on a team’s free throw 

shooting and ability to retrieve offensive rebounds. It was found that in the last eight minutes the home team is 

significantly better at offensive rebounding, but is significantly worse at free throw shooting. 

The aim of this paper is to measure the importance of points during an NBA basketball game using a 

Brownian motion. A continuous-time version of a random walk, and originally used to model the random 

movement of particles suspended in fluid, the Brownian motion has been found to provide reasonable 

estimates of a team’s probability of winning during a basketball game, given both the time remaining and the 

lead of the home team (Stern, 1994). In this paper, we explore adjusting these probabilities into conditional 

probabilities in order to use the point importance definition conceived by Morris (1977). 

The paper is broken down into the following sections: Section 2 details the methodology behind the 

Brownian motion model and the calculations required to generate the point importance; Section 3 provides an 

analysis of the point importance measure including graphical representation of the change during a game; 
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Section 4 provides a discussion about the results and details possible drawbacks; and finally Section 5 

concludes the research and identifies possible amendments for future work. 

 

 

2. METHODS 

BROWNIAN MOTION 

Brownian motion is a mathematical model that is applied to understand the random movement of events, such 

as particles suspended in fluid and financial markets. Stern (1994) applied a Brownian motion model to 

basketball games to follow the progress of scores and generate win probabilities for the two competing teams. 

The author found that the Brownian motion model generates reasonable estimates of the home team win 

probability, despite some negative correlation appearing between some quarters. 

The Brownian motion model for the progress sports scores, as described by Stern (1994), first requires the 

time to be transformed into the unit interval t   (0,1), which describes the proportion of the game that has 

expired. Let X(t) represent the lead l of the home team after time t, where X(t) can be positive, negative or 

equal to zero. To apply the Brownian motion model, we must first assume that X(t) can follow a Brownian 

motion model with drift µ (points per game advantage for the home team) and variance σ
2 

per unit time (for 

further information regarding the assumption see Stern (1994)). Under the Brownian motion model, X(t) can 

be modelled as: 

 

 ( )   (      )     (1) 

 

Applying the random walk model, the probability that the home team wins, given they have a lead (or 

deficit) l at time t, is calculated by: 

 

    (   )    ( ( )     ( )   ) 

 

                   ( ( )   ( )    ) 
 

        (
  (   ) 

√(   )  
)            (2) 

 

where Φ is the cdf of the standard normal distribution. Note that the win probability for the away team is 

found by taking the compliment of (2). In Stern (1994), the drift parameters µ and σ were estimated using 

probit regression and were held constant for all teams, meaning that each game had the same pre-game 

advantage to the home team. This is a coarse assumption, however, as the strength of individual teams is 

ignored. This issue is raised in Stern (1994) with the author suggesting bookmaker line spread (money lines) 

may be a better substitute. Use of the bookmaker lines was explored by Glasson (2006) when applying a 

Brownian motion model to Australian Rules football, while pre-game estimates based on Elo ratings were 

applied by Ryall, Bedford and Glasson (2009). 

For our model, we use a slight adjustment to the bookmaker’s lines. The µ and σ parameters were 

determined empirically using the observed margins for all of the matches from the previous season dependent 

on the bookmaker’s line. This approach was used to account for the possibility that σ may be dependent on µ 

or the bookmaker’s line. A more appropriate method would be to break down the σ by quarters through either 

a modified logarithmic function (Ryall et al., 2009) or through using bookmaker information to generate time-

varying implied volatility (Polson & Stern, 2015). 

 

POINT IMPORTANCE 

The point importance measure follows the definition conceived by Morris (1977) by calculating the difference 

between two conditional probabilities: the probability that a team wins the game at time t given they score the 

next point, minus the probability that a team wins the game at time t given they do not score the next point. 

Note here that the second probability equals (2) while the first probability is created by adjusting l in (2). To 

adjust (2) into the required conditional probability, we must first consider that in basketball a single scoring 

possession for a team can result in one point (free throw), two points (two-point field goal), or three points 

(three-point field goal). Therefore, if we say that the potential change in l is equal to s   {1, 2, 3}, then the 

probability that the home team wins the match at time t given they score s points on their next possession is 

equal to the following: 
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    (     )   (
(   ) (   ) 

√(   )  
)                           (3) 

 

The point importance is then defined as the difference between (3) and (2). For the away team, (3) is 

calculated by (-1)*s to indicate that the lead l of the home team is decreasing. By calculating (3) for both the 

home and away team, we are able to distinguish the point importance between the two teams, where scoring 

the next point may be more important to one team given the next score will give them the lead. This method of 

calculating point importance allows us to identify the impact that scoring the next s points has on each team’s 

win probability. 

 

3. RESULTS 

MODEL PARAMETERS 

Play-by-play data for 7,140 NBA games played over six seasons between 2006 and 2012 were collected from 

basketballvalue.com, while pre-game NBA bookmaker lines for the parameter µ were collected from 

bet365.com. The full play-by-play for all games were loaded into Microsoft Excel where the Brownian motion 

model was then applied. For games which ended in a tie (X(1) =0) and required overtime, the fractional time t 

was re-set for the start of the additional five minute period. This was completed for the each additional 

overtime that was required to determine a victor. 

As mentioned in the methods section, the parameters µ and σ are determined by assessing all games from 

the previous season that had the same absolute pre-game money line as the current game of interest. A sample 

of the absolute money lines with average score difference and standard deviation for the 2010/2011 NBA 

season are presented in Table 1. 

 

ABS(Money line) µ σ 

0 -2.15 7.63 

1 0.64 11.67 

1.5 0.88 11.63 

2 -0.02 12.43 

2.5 0.62 11.41 

3 -0.8 10.11 

3.5 2.88 10.21 

4 0.75 15.51 

4.5 0.89 11.43 

 

Table 1: 2010/2011 absolute money lines with average score difference (µ) and standard deviation (σ) 

 
IN-PLAY PROGRESS 

To assess how the point importance measured by a Brownian motion model progresses throughout a game, we 

explore two case studies. The first game we assess was played between New York (home) and Boston (away) 

on December 25
th

, 2011. The pre-game bookmaker line was equal to -5, with all games from the previous 

season with an absolute money line equal to 5 having an average score difference of -1.21 with a standard 

deviation of 12.30; resulting in a pre-game Brownian motion win probability of 53.91% for New York 

(46.09% for Boston). The lead for New York and the point importance for both teams throughout the contest 

are presented in Figure 1, with vertical lines distinguishing between quarters. Note that the point importance is 

broken down into the importance of scoring the next one, two or three points for both teams. 

In Figure 1, it can be seen that the point importance for both teams responds to the lead of the home team, 

with the importance being high when the scores are close. This is most notable in the final quarter, where it is 

also observed that the point importance is higher for the trailing team. In fact, over the duration of the contest, 

it can be seen that the point importance for the trailing team is always higher than the leading team. This is a 

logical result, as scoring the next set of points in the game would be more critical to the trailing team as they 

must reduce the score margin in order to get back into the contest. It can also be seen that the three point 

importance for both teams is always higher than the one point and two point importance. Once again this 

makes logical sense, as a three-point shot rewards a team greater than a one-point free throw or a two-point 

shot. 
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With 16 seconds remaining in the contest, New York held a two point advantage. The point importance for 

all s scores at this stage is low for New York compared to Boston, where the two point importance and three 

point importance are quite high. In the dying stages of the contest, the three point importance is approximately 

double the two point importance. With six seconds remaining, Boston missed a three-point shot but collected 

the offensive rebound. They then missed a two-point shot as time expired, giving New York a two point 

victory. Overall, from this case study, it appears that the point importance measured using the Brownian 

motion has reasonably quantified how critical certain moments are during the contest for both teams. It has 

also been able to distinguish the importance according to which team is in the lead and which team is trailing. 

 

 

 
Figure 4: New York lead (top) and point importance for New York and Boston (bottom) 

 

The second game we assess is a four-overtime contest played between Atlanta (home) and Utah (away) on 

March 25
th

, 2012. Evaluating this game allows us to explore how the point importance changes when the score 

is level at the end of regulation and overtime periods are required to determine a victor. The pre-game 

bookmaker line was equal to -1, with all games from the previous season with an absolute money line equal to 

1 having an average score difference of 0.64 with a standard deviation of 11.67; resulting in a pre-game 

Brownian motion win probability of 54.66% for Atlanta (45.34% for Utah). Using the finding from the 

previous case study that the three point importance is always the highest, Figure 2 presents the three point 
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importance throughout the contest, with vertical lines distinguishing between quarters and also the overtime 

periods. 

As seen in Figure 2, the three point importance is low throughout the first half before increasing during the 

second. The increase in the final quarter is similar to Figure 2, indicating that the Brownian motion model is 

determining that points are most important in the final quarter. Once again this is a logical result, as the most 

critical moment during a contest would most likely occur during the final quarter when the score margin is 

small. Looking at the overtime periods, the point importance appears to increase quickly, which suggests that 

re-setting the fractional time at the start of the overtime period has worked correctly. Atlanta would eventually 

secure a four point lead with 13 seconds remaining in the fourth overtime. Utah would go on to miss their next 

two-point shot and lose the contest by six points. 

 

 

 
Figure 5: Point importance for Atlanta and Utah 

 

4. DISCUSSION 

The results from these case studies indicate that point importance can be reasonably quantified by applying a 

Brownian motion model. During a game, the maximum point importance occurs during the final quarter or 

overtime period, which is expected because this is when the most critical moments of a game would occur 

(especially if scores are close). This result indicates that the Brownian motion model can successfully quantify 

the importance of the critical moments correctly. This was observed in the Figure 1, with the point importance 

for the trailing team in both case studies being higher than the leading time. 

An unsurprising observation from the first case study involved three-point shots always having a greater 

importance than a two-point shot or a one-point free throw. A three-point shot will always reward a team 

greater by increasing/decreasing the lead of the other team more than a two-point or one-point shot. 

Furthermore, the result also suggests that a trailing team should consider attempting more three-point shots as 

it always has a greater importance. This supports results on the risk of the three-point shot by Goldman and 

Rao (2013), who reported that teams should consider shooting more three-point shots when trailing during a 

contest. 

While it has been discussed that the Brownian motion model has provided a reasonable method of 

calculating point importance during a basketball game there are drawbacks. Firstly, as discussed in Ryall et al. 

(2009), Brownian motion does not take into account the discrete nature of scoring, with the team that is ahead 

late often being predicted as the outright winner. Secondly, the model parameters that were implemented in 

this paper are not optimised and are calculated in a somewhat crude manor. Further refinement of these 

parameters could yield more accurate results, which may be achieved through standardising the pre-game 

money line and adjusting the parameters after each quarter (Polson & Stern, 2015; Ryall et al., 2009). The last 

drawback of calculating point importance with a Brownian motion model is that there is no information about 

which team is in possession of the ball at time t. Future work on distinguishing which team has possession of 
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the ball could yield valuable benefits, as clearly point importance would be higher for a team is that is in 

possession of the ball with little time remaining, compared to if they did not have possession. 

Despite the drawbacks, it is believed that calculating point importance using the Brownian motion model 

yields positive results that can be developed further in future research. It is also possible that the importance of 

points during a game of basketball can be used to assess player performance. This can be completed through 

isolating the most important moments during a game and collecting a player’s performance statistics during 

these moments. It could be determined that a certain player shoots the ball with greater accuracy during 

important moments and is therefore a ‘clutch’ player, or perhaps some players can be found to turn the ball 

over more frequently during critical moments. 

 

5. CONCLUSIONS 

Throughout a game of basketball there are moments which can affect a team’s probability of winning. In this 

paper, we have applied a Brownian motion model to calculate the importance of scoring the next points during 

a game of basketball in an attempt to identify critical moments. Results indicate that the Brownian motion 

model reasonably quantifies the importance of scoring the next set of points during a basketball game, with 

further work required on optimising model parameters and exploring player performance analysis. 
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Abstract 
We better understand the present and prepare for the future by understanding the past. We have analysed the 

list of winners from 776 BC to 277 AD, provided by the Persius Project. Events were added to maintain 

spectator interest, eventually totalling five sports (28 events): Athletics (6), Chariot Racing (9), Combat Sports 

(6), Equestrian Racing (3) and Artistic Performance (4). 

Leonides of Rhodes was the Carl Lewis of antiquity, winning 12 championship wreaths, called ∑τεφανι, 

the Greek version of my family name. He won all three running events during four consecutive Games. The 

father of Alexander the Great, King Phillip II of Macedon, won three times. Nero won six times, albeit in 

events contrived for his benefit. 

Athletes were disqualified for bribery, not for using performance enhancing drugs. Each cheater had to 

pay for part of a statue and have his name engraved. It took 14 statues: the first statue wasn’t much of a 

deterrent.  

The Games spawned technology. Clever systems were used to hold back runners for the start and to 

stagger the start of chariots to compensate for starting position.  Modern research has shown that 5% can be 

added to the length of the (probably standing) long jump by properly swinging the weights that were carried. A 

leather cord and ring was used to provide leverage and spin stabilization for throwing the javelin. 

Women were included in Greek sport. Unmarried women attended the Olympic Games. Married women 

were not to attend; but, one was Olympic champion, having owned and trained the winning chariot’s horses. 

Unmarried women competed in the Heraia Games at Olympia. The running track was shortened to 500 Greek 

feet, 83% as far as men, exactly the ratio for female/male Olympic champion velocities in 1928, when women 

again competed in athletics. Female Olympic champions now run 90% as fast. 

 

Keywords: Ancient Olympic Games, technology, starting mechanisms, women’s equality, Heraia 

Games, athletics, long jump, halteres 
 

1. INTRODUCTION 

We better understand the present and prepare for the future by understanding the past. The Rio Olympics of 

2016 are about to begin. The modern Games are now 120 years old, a relative short time span compared to 

their ancestral origin. The Olympic Games were first contested in 776 BC at Olympia, lasting more than 1000 

years until abolished in 393 AD. During that time span, events were added to maintain the interest of 

spectators, as is done today. Efforts were made to entice support, for example from the Emperor Nero, much as 

we now seek support from television and commercial sponsors. Great athletes arose and became national 

heroes and Olympic icons. Organizers had to deal with and to punish cheaters, in adherence to their code of 

conduct. Technology was employed to improve performance and render fair starting conditions. Women were 

included in the sporting fabric at Olympia, based on the then religious practices.  

Olympia was not the only site of sports competition during a four-year Olympiad. The Olympic Games 

would be contested on year one of a cycle, the Nemean and Isthmian Games on year 2, the Pythian Games on 

year 3 and then the Nemean and Isthmian Games would repeat on year 4. Collectively, these were called the 

Panhellenic Games or the Stephanitic Games. The latter term is used because each winner received a wreath 

called a ∑τεφανι in Greek, or Stefani, my family name.  

We will now examine the events, superstars, technology and women’s role in the Ancient Olympics. 

Because most of the reference titles are self explanatory as to material covered, most references will not be 

cited to avoid redundancy. 
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2. EVENTS 

Thanks to the Perseus Project of Tufts University, USA, as sponsored by The Melon Foundation, The 

Annenberg Project and many others, ancient texts were scoured to create a list of 875 contested events from 

776 BC through 277 AD. For each dated event, we have the winner and winner’s home town. No winners were 

recorded after 277 AD. We placed that data base of 875 events into an Excel spread sheet. We deleted 42 

events that had ambiguous event definitions or no event definitions. The remaining 833 events were sorted in 

various ways, to formulate as definitive a list of the contested events and winners as is currently possible. 

 
Event Comments/Distance First 

Year 
Last Year Times Held 

Artistic Performance (4) 

Herald Competition Gap of 420 years until 65 AD 396 BC 261 AD 12 

Lyre Playing  65 AD 65 AD   1 

Tragedy Competition  65 AD 65 AD   1 

Trumpeter Comp.  396 BC 217 AD 19 

Athletics (6) 

Diaulos X2, 384 m 724 BC 153 AD 37 

Diaulos in Armor X2, 384 m 520 BC 185 AD 29 

Dolichos X7-24, 1344-4608 m 720 BC 221 AD 29 

Pentathlon Discus, Javelin, Long Jump, Stadion, Wrestling 708 BC 241 AD 31 

Stadion X1, 192 m 776 BC 269 AD 250 

Stadion-Boys X1, 192 m 632 BC 133 AD 30 

Chariot Racing (9) 

Apene 2 mules, x6, 7.2 km 500 BC 456 BC   4 

Chariot Race  65 AD 65 AD   1 

For Foals  65 AD 65 AD   1 

10 Horse Chariot  65 AD 65 AD   1 

Synoris 2 horses, x6, 7.2 km 408 BC 60 AD 14 

Synoris-Foals 2 foals, x6, 7.2 km 96 BC 1 AD   3 

Tethrippon 4 horses, x12, 14.4 km 680 BC 241 AD 59 

Tethrippon-Foals 4 foals, x12, 14.4 km 372 BC 153 AD   7 

Foals’ Chariot Race  48 BC 48 BC   1 

Combat Sports (6) 

Boxing  688 BC 25 AD 58 

Boxing-Boys  540 BC 89 AD 37 

Pankration  648 BC 221 AD 69 

Pankration-Boys  200 BC 117 AD   8 

Wrestling  708 BC 213 AD 66 

Wrestling-Boys  632 BC 97 AD 32 

Equestrian Racing (3) 

Foal Racing X6, 7.2 KM 256 BC 72 AD   7 

Horse Racing X6, 7.2 KM 648 BC 197 AD 25 

Mare Racing X6, 7.2 KM 496 BC 496 BC   1 
Table 1: Ancient Olympics by Sport (x6 means 6 lengths or circuits) 

 

In Table 1, there were five sports (28 events) including artistic performance (4), athletics (6), chariot 

racing (9), combat sports (6) and equestrian racing (3). Among the artistic performance events, the herald and 

trumpeter competitions reflected a then-practical skill. Since there were no loud speakers, heralds and 

trumpeters were employed to announce and control public events as well as warfare. They had to be heard 

clearly over large distances. Oddly, two events were held only in 65 AD and the herald competition was held 

in 65 AD after a long hiatus. 

In athletics, the most common running event was the stadion (giving us the word “stadium”), run over one 

length of the 600 Greek foot track, measured at 192 m. The other running events were multiples of the stadion. 

The pentathlon was an elimination competition including the discus, javelin and long jump (only contested in 

the pentathlon) plus the stadion and wrestling. The final competitors wrestled for the “Stefani”.  

The hippodrome at Olympia contained a 1.2 km course. Chariot races with two animals covered six 

circuits and with four animals, 12 circuits. Notice that three chariot races were contested only once, in 65 AD.  
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A race with two horses or foals was called a synoris while with four such animals; the race was called a 

tethrippon. Combat events include boxing, wrestling and the no-holds-barred pakration. The three equestrian 

events covered six circuits of the hippodrome, with competition for foals, horses and mares. 

Of all 833 contested events, 49% were in athletics, 32% in combat events, 11% in chariot racing, 4% in 

equestrian racing and 4% in artistic performance. Clearly, the main interest was in athletics and combat 

competition, covering 81% of all contested events. It is interesting that artistic performances comprised 4% of 

events contested. The Second World Mind Sport Games (chess, bridge, checkers, go and Chinese checkers) 

were held just after the 2012 Olympics, with 29 events, 10% as many of the 300 physical sport events in the 

summer Games. Thus, the modern world, as the ancient world, honours mental and physical prowess 

 

3. SUPERSTARS 

The 833 event results were sorted by winner, to determine the top event winners of antiquity.  Two famous 

names emerged, one of which explained anomalies in the events list. Nero won six events in 65 AD: the three 

chariot racing events and the two artistic performance events contested only in 65 AD and the herald 

competition in 65 BC that was held after a 420 year hiatus. There is an old adage that “Nero fiddled while 

Rome burned”. Actually, Nero won the lyre playing competition. It was probably a bad career choice to defeat 

Nero, if anyone other then Nero actually competed in those six events. One can only wonder how many ten-

horse chariots can race at a time. Organizers obviously wanted Nero’s patronage. The other famous name was 

the father of Alexander the Great, King Philip II of Macedonia, who won the synoris (348 BC), the tethrippon 

(352 BC) and the horse race (356 BC). Defeating him was probably a bad career choice too.  

Only three athletes won more events than Nero, although Nero’s wins are highly questionable. In 

athletics, Leonides of Rhodes won 12 events: winning each of the stadion, diaulos and diaulos in armour for 

four consecutive Games starting in 164 BC, thus spanning a 12-year period. Given that all the youth of Greece 

wanted to win those same running events and that one slip in any one heat would have eliminated him, 

Leonides is arguably an Olympian for the ages. In our day, Carl Lewis won 10 Olympic gold medals in 

athletics from 1984 to 1996, including the 100 m run, 200 m run, long jump and 4x100 m relay. His four long 

jump wins covered a 12-year span, similar to Leonides’ span. The second most prolific winner in the Ancient 

Olympics was Herodoros of Megara who won the trumpeter’s competition nine consecutive times starting in 

328 BC, thus spanning a remarkable 32 years. Third was Astylos of Kroton, who had been top winner in 

athletics before Leonides, having won seven times from 480 BC: winning in the stadion (three times), diaulos 

(once) and diaulos in armour (three times).  

Four athletes won six events legitimately. Winners in wrestling were Hipposthenes of Sparta (from 632 

BC) and Milon of Kroton (from 540 BC). Winners in athletics were Chionis of Sparta (from 664 BC) and 

Hermogenes of Xanthos (from 81 AD). 

One of the most irrepressible athletes was Sostratos of Sikyon, nicknamed “Mr. Fingertips”. He won the 

no-holds-barred pakration at Olympia three times (from 264 BC), the Isthmian and Nemean Games 12 times 

and the Pythian Games two times for a total of 17 wins. His winning record can be traced to his unusual ability 

of breaking his opponent’s finger tips, thus his nickname 

. 

4. CHEATING 

In the modern Olympics, there has been a concerted crackdown on performance-enhancing drugs since 1968 

via drug testing. Such drugs were not illegal in the Ancient Games nor in the early years of the modern Games. 

In the ancient Games, athletes openly used opium juice, hallucinogens, strychnine and wine. As late as 1904, 

Thomas Hicks was given strychnine and brandy to help him win the marathon. The ancients were conscious of 

the need for proper nutrition (done legally as today). They ate large amounts of meat (providing protein), took 

herbs (which acted as supplements). They had a rudimentary idea about oxygen transfer and testosterone when 

they ate animal hearts and testicles. 

Bribery was their form of cheating. As today, athletes pushed the boundaries of legality in search of 

monetary rewards. The organizers disqualified those who were caught bribing. Further, the guilty had to chip 

in for statues of Zeus with their names engraved thereupon. Was that a deterrent? If one statue was sufficient, 

the answer would be yes. In fact, over 1000 years, a total of 14 such statues, the Zanes, lined the athletes’ path 

into the Olympic stadium. The lesson for today is that human nature has not changed: there will continue to be 

a prolonged battle between anti-doping authorities and the audacious rule-bending athlete. 

 

5. TECHNOLOGY 

Two parallel starting groves for the runners’ toes are still in place at Olympia, with posts separating the 22 

positions. In order to start those 22 runners fairly, a rope mechanism, the hysplex was created as in Figure 1 
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from Archaeology Archive (2015), taken at Stephen Miller’s re-enactment at Nemea in 1993. See also Miller 

(2004) for a through discussion of Ancient Greek Athletics. In the left photo of Figure 1, starters in yellow at 

each end are cranking a narrow post from our left to our right, twisting a rope which would force the post to 

fall left were it not for restaining pins about to be put in place. The athletes are then restrained by two sets of 

connected ropes and the posts between them. In the centre photo, the head starter has yanked a rope, releasing 

the two restraining pins, causing the posts to fall to our left taking the ropes with them. The runners move to 

our left, where the outside runners have a small advantage, because the ropes fell from outside to inside.  

The right most photo of Figure 1 shows the starting alignment for six pairs of chariots, which will move to 

our right after the start. The hippodrome was a flat 1.2 km oval with very sharp corners. During a race, the 

chariots nearest to the centre divider had to slow down on each turn so as not to impact outer chariots. The 

outermost chariots had to travel farthest around each curve. The chariots in the centre of the track could travel 

at constant speed. In the right photo of Figure 1, a dolphin-shaped lever controls the starting gates for each pair 

of chariots. The leftmost pairs start first. As they ride past the next pair, the gates open, giving the left most 

chariots an advantage. That pattern continues. When the right-most pair is released, the chariots form the 

mirror image of the starting alignment, compensating the outer chariots about to be disadvantaged by the turns. 

 

                
 

Figure 1: Starting Mechanism for Running Races (Left and Center) and for Chariot Races (Right) 

 

                                         
 

Figure 2: Technique for a Two Footed Long Jump with Weights 

 

The long jump contestants in the pentathlon had to jump with halteres, smoothed weights, in each hand, 

weighing 1.5 to 5 kg. Minetti and Ardigoi (2002) found that trained athletes could gain 5.7% carrying a 2 kg 

weight with the optimum weight being 5-6 kg. Huang et al. (2005) established a gain of 4.5% using 2 kg 

weighs with an optimum weight equal to 8% of body mass. The conclusion is that a 5% gain is possible with 

proper technique. The best weight is 8% of body mass for both researchers.  

An epigram indicated that Phayllos of Kroton once jumped 55 feet (16.3 m). He competed in the Pythian 

Games in 482 and 478 BC. Researchers from KU Leuven, The Ancient Long Jump and Phayllos (2012), 

indicated that after eight weeks of training, athletes jumped 15 m using five two-footed jumps, five for the 

number of events in the pentathlon. The left part of Figure 2 shows the resulting technique through the forward 

thrust. The right photo from KU Leuven shows the landing, as shown on a contemporary urn. 

Another bit of technology was twisting a cord around the javelin, ending in a loop for the thrower’s finger. 

That loop provided leverage and, as the cord unwrapped, the javelin was spin-stabilized, Miller (2004), 69-70.  

 

6. WOMEN’S ROLE 

This information is drawn primarily from Were Women Allowed at the Olympics (2016) and Miller (2014), 

pages 150-159. The religious practices of the day defined the women’s role in ancient Greek sports, based on 

the gender of the god to whom a competition was dedicated. What we now call the Olympic Games was 

dedicated to Zeus. Being a male god, only men were allowed to compete. Unmarried women could and did 
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attend. The High Priestess of Demeter was an honoured dignitary. Married women were not supposed to 

attend; however, Kyrniska of Sparta was a double Olympic champion in 396 and 392 BC, having owned and 

trained the winning chariot horses in the tethrippon. She accepted her laurel wreathes outside the stadium. 

Kallipateira of Rhodes trained her son inside the stadium but was discovered. She was pardoned since her 

father, three brothers a nephew and her son were champions. Thereafter, trainers had to be naked. 

 Women competed in the Heraia Games, so named because these games were dedicated to Zeus’ 

mythological wife Hera, contested in a different year from the Olympic Games; but in the same Olympic 

stadium. Unmarred women competed. Married women served as officials and trainers. We do not know if men 

were allowed to attend. The Greek government empowered the so called Sixteen Women, all married, to 

coordinate female sports in all of Greece. Women competed in three age groups, over a stadion, reduced from 

600 Greek feet to 500. This implies that women were assumed to run about 5/6 or 83% as fast as men. In fact, 

when women resumed Olympic athletics competition in 1928, the female champions ran 83% as fast as their 

male counterparts, Stefani (2014). Today, female Olympic champions in athletics run about 90% as fast as the 

male champions, Stefani (2014).  

Current tradition calls for the Olympic flame to be lit at Hera’s shrine in Olympia. That lighting provides a 

symbolic equality for women, given that men and women now both compete at the same time, in the same 

place and in nearly equal numbers of events.  

 

7. CONCLUSIONS 

Many of the features and trends of the Ancient Olympics exist today and are likely to continue into the future. 

As today, the most popular sport was athletics while sports and events were added to maintain spectator 

interest. Financial patronage was sought by including Nero and King Philip II of Macedonia as Olympians 

while we seek television and sponsor revenue. The greatest winner in athletics was Leonides who won 12 

events over a 12-year period. Carl Lewis won 10 events over a similar 12-year period, apparently the 

competitive life span in athletics. Organizers sought to catch bribers over the entire span of the Ancient Games 

as evidenced by the need for 14 statues with cheaters’ names inscribed. We are likely to continue the contest 

between anti-doping efforts and athletes seeking an illegal edge. Technology consisted of equipment to 

produce a fair start in running and chariot racing and technique for the long jump and javelin, much as we seek 

such technology today. The role of women was delimited by the gender of the god to whom competition was 

dedicated. The ancient and modern worlds  are linked in that the torch for today’s Games is lit at Hera’s shrine 

while men and women now compete together, producing an equity for women only begun in Ancient Greece.  
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Abstract 
In Japan, the rugby union has been becoming a popular sport, especially after the Japan national rugby team 

made three wins in the Rugby World Cup 2015, together with the fact that Japan will hold Rugby World Cup 

2019. The aim of the Japan national rugby team is to advance to the final round in Rugby World Cup 2019 as 

the host country. In Japan, not so many quantitative studies have been conducted, especially for Japan Rugby 

Top League (JRTL). Here, we try to evaluate the teams and the players in JRTL, and compare them with world 

level teams and players. As the result of this study, in terms of team evaluation, the defense of the teams in 

JRTL seems to be weaker than that of Six Nations Tournament. In terms of player evaluation, most of the 

passers and place kicker as tackler are Japanese players in JRTL, although few Japanese players are place 

kicker as game controller and competing possession players. Japanese players seem to be weak in tackle, game 

control and competing possession. Therefore, JRTL would need to foster Japanese tackler, game controller and 

competing possession player to strengthen the Japan national rugby team. 

 
 

Keywords: japan rugby top league, rugby union, game statistics 

1．INTRODUCTION 

Rugby Union is a contact sport played by 15 players. These 15 players are assigned 10 different positions in 

the game. These include: forward (FW), prop(PR), hooker(HO), lock(LO), flanker(FL), number 8(NO8), 

backs(BK), scrum-half (SH), stand-off(SO), center(CTB), wing(WTB) and full-back(FB). 

  The Japan national rugby team won against the South Africa national rugby team in the Rugby World Cup 

2015. Japan will hold the Rugby World Cup in 2019. The target of Japan national rugby team is to advance to 

the final round as the host country of the 2019 Rugby World Cup. In Japan, there is a domestic rugby union 

competition called Japan Rugby Top League (JRTL). There are 16 teams in JRTL and the players who belong 

to Japan national rugby team are selected from this league. Therefore, if the level of JRTL becomes higher, the 

Japan national rugby team will be strong. However, JRTL have not been studied from the view of comparison 

with other international top-level league. Thus, in this study we try to evaluate the teams and the players in 

JRTL and compare them with world level teams and players. 

In terms of team evaluation in rugby, Ortega et al (2009) show the differences of the game statistics of the 

winning teams and losing teams of Six Nations Tournament (SNT). We analyze the SNT in the way of Ortega 

et al., and compare between JRTL with SNT. In terms of player evaluation, in recent years, the number of 

JRTL players coming from nations such as New Zealand, Australia, and South Africa has been increasing. 

Thus, it is possible to compare between Japanese and foreign players in JPTL. Using the quantitative approach 

to the evaluation of teams and players, we would like to raise the problems that the Japan national rugby team 

to achieve the target. 

 

2. METHODS 

DATA 

In this study, data were collected using a smart phone mobile application called "Japan Rugby Top League 

official application". In terms of team evaluation, we use the data of the 2015-2016 season. As there are 16 

teams in the league, there were 80 games in the season (10 games for each team). Actually, 78 game data were 

used except for two games because of withdrawn. On the other hand, SNT data were collected from the site of 

“rbs6nitons.com”. There are 6 teams in SNT and 15 games were played in the 2016 season (5 games for each 

team). Actually, 14 games were used for this study because of withdrawn. Data analysis was conducted based 

on play items shown in Table1. There are 3 groups in these play items: points scored, way in which points 

were scored, phase of play, way teams obtained the ball and how the team used it; and Game development, all 

of which are tactical aspects of the game.  

mailto:makotos621115@yahoo.co.jp
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In terms of player evaluation, we use the data of the 2014-2015 season. There were 112 games in the season 

which was not influenced by rugby world cup 2015. As each team played 14 games in the season, total time 

was 1,120(=14×80) minutes. In this study, we analyzed 171 players who played more than 700 minutes, about 

two-thirds of the total time. Data analysis was conducted based on 19 play items shown in Table 2. 

 

 
Table1. Items studied in team evaluation 

 

 

  
Table2. Items studied in player evaluation 

 

STATISTICAL ANALYSIS 

In team evaluation, the Mann-Whitney U test was carried out for analyzing the difference between the winning 

teams and the losing teams. In player evaluation, the principal component analysis was used in order to 

summarize the data of the 19 items. In addition, the players were divided into clusters using the cluster 

analysis based on the k-means method. The SPSS 22.0 statistical program was used for this analysis.  

 

3. RESULT & DISCUSSION 

TEAM EVALUATION 

The average values, standard deviations, and medians of the values of the play items with regard to the 

winning teams and the losing teams in both JRTL and SNT are shown in Table 3. 

For the point scored, the difference in tries score and successful penalty goals can be seen in the comparison 

between JRTL and SNT. The tries score of JRTL is higher than that of SNT in both the winning teams and the 

losing teams. In addition, the penalty goal of JRTL is lower than that of SNT. From this result, JRTL defense 

is likely to be weaker than SNT. This is because if the opposing defense is strong, attacking team tends to 

choose penalty goal rather than try as a way of scoring. 

For the phases of play, the difference in line-out lost is not seen in the comparison between the winning 

teams and the losing teams of JRTL, although the difference in line-out lost can be seen in SNT. The line-out 

lost of the losing teams in SNT occurred more frequently than that of the winning teams. From this result, the 

line-out lost in JRTL does not seem to make a major influence to winning. 

For the game development, the difference in terms of tackles missed and possession kick can be seen in the 

comparison between JRTL and SNT. The tackle missed of JRTL is higher than that of SNT in both the 

winning teams and the losing teams. In addition, the possession kick of JRTL is lower than that of SNT in both 

the winning teams and losing teams. From the fact that tackles missed occur more frequently and possession 

kick occurs less we would infer that the defense of JRTL is weaker than that of SNT. This is because if the 

opposing defense is strong, attacking team often chooses the boll carry rather than the possession kick. 
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    (a) Japan Rugby Top League              (b)Six Nations Tournament 

Table 3. Differences between the winning teams and the losing teams as the game statistics 

 

PLAYER EVALUATION  
Principal component analysis was conducted for player evaluation in JRTL using the 19 items shown in Table 

2. Table 4 shows the coefficients from the first to the fourth principal components. The contribution ratio of 

the four components was 68.57%. The top 10 players on each principal component score are shown in Table 5. 

Looking at the scores of the first component, they are strongly associated with 9 items: “point score”, 

“kick”, “line break”, “tackle break”, “pass”, “ball touch“, “penalty goals”, and “conversions”. Also the scores 

of the first component are weakly associated with 3 items: “support”, “tackle assist”, and “penalty”. These 12 

items represent the plays relating to the ball. Main positions related the 12 items are SO, CTB and FB, and the 

players who have high first component score will be SO, CTB and FB. In this analysis, we found that more 

than a half of the top 10 players in terms of the first component score were foreign players as shown in Table5. 

From this result, we would say that game controller seems to be chosen from foreign players in JRTL.  

The scores of the second component are strongly associated with 5 items: “contact”, “point made”, “off-

road”, “tackle breaks”, and “jackal”. These 5 items represent the plays relating to competing possession. Main 

positions related to the 5 items are FL, No8 and CTB, and the players who have high second component score 

will be FL, No8 and CTB. Also, more than a half of the top 10 players in the second component were foreign 

players as shown in Table5. From this result, we would say that players related to competing possession is 

chosen from foreign players in JRTL.  

The scores of third component are strongly associated with 4 items: “penalty goals”, “conversions”, 

“tackle”, and “assist tackle”. These 4 items represent the plays relating to place kick and tackle. Main positions 

related to the 4 items are SO and CTB, and the players who have high third component score will be SO and 

CTB. Now, most of the top 10 players were Japanese players. From this result, we would say that place kicker 

and tackler tend to be chosen from Japanese players in JRTL.  

The scores of fourth component is strongly associated with 2 items: “pass”, and “ball touch”. These 2 items 

represent the plays relating to passer. Main position related to 2 items is SH, and the players who have high 

fourth component score will be SH. All of the top 10 players in this component were Japanese players. From 

this result, we would say that passer is chosen from Japanese players in JRTL. 
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Table 4. Coefficients for the first to forth principal components referent to each item 

 

  
□Japanese ■Foreigner 

Table 5. The top 10 players in each principal component score 

 

  The players explained by these four components were divided into six clusters by the cluster analysis. The 

number of players in each cluster is shown in Table 6, according to their positions. Table 7 also shows the 

average of the principal component scores of each cluster. 

  We here explain the characteristics of clusters 1, 2 and 3. In cluster 1, the players who have high score of 

second component seem to gather as shown in Table 7. That is, mainly FL and NO8 players are in this cluster. 

In cluster 2, the players who have high score of third component seem to gather. That is, most of FW players 

are in this cluster. In cluster 3, the players who have high score of third component seem to gather, that is, 

place kicker is in this cluster.  

  As seen from the result of principal component analysis the first component seems to represent general 

tendency in terms of plays relating to the ball, and the second to the forth components are linked to the 

particular positions which correspond to each cluster. Here, we note that there are some exceptions in each 

cluster. For example, Colin Bourke is a SO player in cluster 1 shown in Table 6. Here, SO has a connecting 

role with the FW and BK (Parsons and Hughes, 2001), and cluster 1 consists of mainly FL and NO8, not SO. 

Colin Bourke has a characteristic of play with competing possession rather than pass. That is, his play style as 

a SO seems to be different from other SOs. As Colin Bourke is foreign player, he might have a role of 

competing possession in his team. We can infer this kind of insight just from the frequency data. 

  As seen from the result of principal component analysis, the third component linked to FW which correspond 

to cluster 2. There are also some exceptions. For example, the CTB player (Masatoshi Miyazawa) was in 

cluster 2. He has a characteristic of play with tackle than ball carry, while the other CTB players make 

Rank First component Second component Third component Fourth component
1 B arnes(SO ) K ikutani(N O 8) Shigem itu(SO ) H iw asa(SH )

2 P isi(SO ) M aekaw a(FL) Tatekaw a(C TB ) Tujino(SH )

3 G orom aru(FB ) Toeava(C TB ) B arnes(SO ) Fukui(SH )

4 O gaw a(SH ) Latu(N O 8) M onji(SO ) H am azato(SH )

5 Shigem itu(SO ) Leitch(FL) M itom o(C TB ) Tanaka(SH )

6 D aniel(FB ) Tatekaw a(C TB ) G orom aru(FB ) N ishibashi(SH )

7 Tam ura(C TB ) Arai(FL) Tam ura(C TB ) N am ekaw a(SH )

8 G errard(FB ) Joe Iongi(N O 8) Jantjies(SO ) Yam am oto(SH )

9 Viljoen(FB ) P aea(C TB ) D aniel(FB ) M otegi(SH )

10 Tatekaw a(C TB ) Tui(N O 8) O gaw a(SH ) U m eda(SH )
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different play styles. He is not larger than other CTB players (height 5 feet 6.93 inches and weight 176.37 

lbs.). Possibly, he is a key player of defense in his team. In addition, Masatoshi Miyazawa is Japanese player 

and may play a role of tackler.  

  According to James et al. (2005), any positions played by any players who have different playing styles. 

However, the roles of Japanese and foreign players may be decided in JRTL, that is, Japanese play as tackler 

and passer, and as foreign players as game controller and competing possession player. 

 

  
Table 6.Number of players in each position in each cluster 

 

 

  
Table7. The average of the principal component scores of each cluster 

 

4. CONCLUSION 

In this study, we tried to evaluate the teams and the players in JRTL, comparing them with world level teams 

and players. As the result, in terms of team evaluation, the defense of the teams in JRTL seems to be weaker 

than that in SNT. In terms of player evaluation, most of the passers and place kicker as tackler are Japanese 

players in JRTL, although few Japanese players are game controller and competing possession players. 

Japanese players seem to be weak in tackle, game control and competing possession. Therefore, JRTL would 

need to foster Japanese tackler, game controller and competing possession player to strengthen the Japan 

national rugby team. 
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Abstract 
 

Many people want to predict how a sports team will perform in a given season. Fans, analysts, and sports 

bettors all have an interest in pre-season predictions and their accuracy. There have been many methods 

developed to predict team performance in many sporting codes. However, rugby union has had relatively little 

research into the efficacy of different methods to predict team performance. In this research we applied five 

different predictions methods to Super Rugby. These methods encompassed some of the major ideas used in 

prediction; simplistic result-based rating systems, points scored and conceded, and team chemistry – quantified 

using a time-varying multi-partite network. First, we adapted these methods so they could be used for Super 

Rugby predictions. We then evaluated the methods by comparing them on a variety of different metrics. The 

results of the research are interesting because they not only provide a talking point for Rugby prediction but 

form a basis from which more complex methods can be developed. 
 

Keywords: Rugby union, forecasting, multi-partite networks 
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Abstract 
 

Assessing match importance in professional football (soccer) is beneficial for a number of reasons, primarily 

in predictive modelling for match outcome and attendance. Previously, modelling of match importance has 

focused on some specific end-of-season aim, such as winning the league championship or avoiding relegation. 

Calculation has typically involved the use of retrospective measures or complex computer simulation 

procedures. These methods have drawbacks, where retrospective measures cannot be implemented into a live 

season; and complex computer simulation procedures require a great deal of runtime. In this paper, we explore 

the effect of simplifying the calculation of match importance using a probabilistic method by relaxing match 

outcome independence assumptions at varying degrees of severity in an attempt to counteract these drawbacks. 

The probabilistic measure builds off of previous research by defining match importance as the difference 

between success probabilities conditional on the result of a match. Probabilities follow a trinomial distribution 

to account for the possibility of each team winning, losing or drawing a match; and for simplicity remain 

constant throughout a season and independent of the teams playing. A complete season simulation model 

provided the basis for comparison with the simplified model, where analysis compared the relative size of the 

bias of outcome probabilities and the characteristics of importance distributions for teams aiming to finish in 

the top position at the end of the season. Results indicated that the complexity of the complete simulation 

procedure is not required as the distribution of importance remains similar to that of the simpler probabilistic 

measure. Results also suggested that team strength should be incorporated into match importance calculations 

because the assumption of constant match outcome probabilities between teams underestimates the variation in 

round by round cumulative season points totals. 
 

Keywords: Match importance, trinomial distribution, simulation, football 
 

1. INTRODUCTION 

In past research, predictive modelling of match outcome and attendance has included variables such as weather 

conditions and population of the home team’s town (Baimbridge, Cameron, & Dawson, 1996). One common 

inclusion is the importance of the match for both competing teams, which is often modelled with respect to 

some specific end-of-season outcome, such as winning the league championship or avoiding relegation. 

Calculation of match importance has typically involved the use of retrospective measures (Jennett, 1984) or 

complex computer simulation procedures (Lahvička, 2015). However these methods have drawbacks, where 

retrospective measures cannot be implemented into a live season, and complex computer simulation 

procedures require a great deal of runtime. 

One of the most popular retrospective match importance measures for football was conceived by Jennett 

(1984). The author defined match importance by first establishing the points total of the league champion at 

the end of the season, and then applying the result retrospectively throughout the season to determine the 

required wins for a team to achieve the points total. This method has been adapted into Australian Rules 

football (Borland & Lye, 1992) and English one-day cricket (Morley & Thomas, 2005). A similar approach to 

retrospective measures is to use a dummy variable (Baimbridge et al., 1996), where a value of 0 indicates a 

game is not important and a value of 1 indicates a match is important. However, the scale of the match 

importance is lost in this approach as importance can only take two values. The most common computer 

simulation procedure applied in past research is the Monte Carlo approach (Lahvička, 2015). The method 

simulates a season a number of times and determines from the results which matches are important to a team. 

While this method provides a complete look at a season when determining importance, the key drawback is 

that it requires a great deal of runtime to complete calculations. 

To counteract these drawbacks and simplify the match importance calculations we propose a probabilistic 

method. Probabilistic measures of match importance have been explored in past research. Schilling (1994), 

building off of work completed on the importance of points in tennis (Morris, 1977), defined match 

importance as the difference between two conditional probabilities: the probability that a team wins a best-of-
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seven game series given they win the next game, minus the probability that the team wins the series given they 

lose the next game. This definition has been applied to Australian Rules football (Bedford & Schembri, 2006), 

NBA basketball (de Lorenzo & Bedford, 2014) and combined with Monte Carlo simulation in English Premier 

League football (Scarf & Shi, 2008). The probabilistic method we propose builds off of the previous research 

by introducing a trinomial distribution function to account for drawn matches. We compare the method to a 

pure Monte Carlo simulation model to determine if the importance distributions change despite the reduction 

in calculation complexity. 

 

2. METHODS 

The definition of match importance for football follows the work completed by Schilling (1994) by using the 

difference between conditional probabilities. However, instead of assessing importance with respect to 

winning a seven game series, we calculate importance with respect to winning the league championship (finish 

first place) in German Bundesliga football. While there are other end-of-season outcomes in Bundesliga 

football (European cup qualification, relegation), we elect to focus on winning the league championship with 

the intention to expand to include other outcomes in future research. 

The conditional probabilities definition by Schilling (1994) is calculated by assessing the difference 

between the probabilities of winning the series given the team wins or loses the next game. However, in 

football there are three match outcomes (win/draw/loss) instead of two (win/loss), where a draw outcome can 

still be beneficial for a team despite being less desired than a win. Therefore, we calculate win and draw 

importance using the conditional probabilities and combine the two to generate a result importance. Result 

importance is defined as the difference between two probabilities: the probability that a team wins the league 

championship given they achieve a non-negative (win/draw) result in their next match (g+1); minus the 

probability that a team wins the league championship given they achieve a negative (loss) result in their next 

match. 

 

  (1) 

 

A Monte Carlo simulation model provides the basis for comparison with the simplified model. Developed 

using a custom VBA program in Microsoft Excel, the procedure first generates a season schedule following 

the format used in Bundesliga football, where each team plays each other twice over 34 rounds. Each 

generated season schedule is then simulated to completion a number of times to generate success probabilities 

(finish first) dependent on individual match outcomes throughout the season. Match importance is then 

evaluated using these probabilities conditional on the current round and the team’s current position. 

To determine the outcome probabilities for an individual contest, match results from seasons 2005/2006 

through 2014/2015 for first and second division German Bundesliga were collected from www.football-

data.co.uk., totalling 5,508 matches. Over the span of the nine seasons, 26% of matches were found to be 

drawn, meaning 74% of the time a victor was decided. This 74% is split evenly between win and loss to create 

win-draw-loss probabilities of 37%-26%-37%, respectively. A drawback of using these constant probabilities 

for all teams is that team strength is ignored; where a strong team should have a larger win probability given 

they are a dominant team. Despite this drawback, we elect to use the constant probabilities to create a baseline 

model, which can be expanded in future research through variation of the probabilities. 

The simplified probabilistic model calculates the match importance using a trinomial distribution. This is 

an extension of the method applied by Bedford and Schembri (2006) but replaces a binomial distribution with 

the trinomial in order to take into account the three match outcome probabilities. Unlike the Monte Carlo 

simulation model, the simplified probabilistic model only requires the points of the league leader and the 

points of the current team of interest. By identifying success and failure scenarios such that the lower ranked 

team can overtake the higher ranked team, the trinomial distribution calculates the probability that a team can 

win the league championship given they win, draw, or lose their next match. In order for the trinomial 

distribution to calculate the conditional probabilities and therefore the importance, match outcome 

probabilities are required. For this, the constant probabilities outlined in the Monte Carlo simulation model are 

used. Like the Monte Carlo model, the simplified trinomial model calculates both a win importance and draw 

importance before combining to the two to generate a final result importance. 

The trinomial distribution simplified model is compared with the simulation model using both simulated 

and observed season results. For the Monte Carlo model, 10,000 iterations are applied, with a further 100 

season result iterations to generate the outcome probabilities. While the 100 iterations may seem low, it was 

found through trial and error that a larger number of iterations dilate the outcome probabilities. For the 

trinomial simulated seasons, the schedule is generated and results are produced similar to the Monte Carlo 
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method. Once the results have been created, the trinomial distribution is applied and the importance of each 

match throughout the season is calculated. For the observed seasons, the trinomial distribution is applied to the 

results from actual seasons of division one and division two Bundesliga football. For the two divisions, the 

win/draw/loss frequencies from each specific division are used when calculating the conditional probabilities. 

 

 

 

3. RESULTS 

The analysis commences with an exploration of the average match importance across all teams after each 

round of the season, with the aim being to determine if the distribution of average importance throughout a 

season differs between models. Figure 1 displays the average match importance throughout a standard 34-

round season, and includes observed results from both division one and division two Bundesliga. 

 

 
Figure 1: Average match importance for simulation and observed seasons 

 

As observed in Figure 1, the average match importance across all four models follow a similar path, with 

average importance peeking at the start of the season before steadily decreasing as the season progresses. This 

is an expected result as there would be less teams competing for the league championship at the end of the 

season, meaning the average importance across all teams would be low. Despite some noise at the start of the 

season, the two simulation models share a similar shape and include a small drop at the conclusion of the 

season. The closeness of these two distributions suggests that the reduction in computational complexity 

implemented in the trinomial model has produced a similar result to the Monte Carlo simulation approach. 

While the average importance distributions have shown that all four models are similar, an exploration of 

importance by specific positions helps to provide more information about the reduction in computational 

complexity. The importance distributions for positions 1, 6, 13 and 18 for both the Monte Carlo simulation and 

the division one observed data are presented in Figure 2. The observed trinomial model is presented here in 

place of the trinomial simulation as the former is seen to follow a similar distribution as the latter in Figure 1, 

albeit slightly lower. We discuss this small difference later in this section. 

As seen in Figure 2, there are some differences and similarities with the distribution of importance by 

specific position. For position 1, the observed curve shows a steady increase throughout the season before 

declining while the simulation model curve shows a dramatic increase at the start before a slow steady decline 

around the same time as the observed curve. For position 6, both models show a steady decline as the season 

progresses, despite the fact that they are mirroring each other. Finally, positions 13 and 18 provide almost 

identical importance distributions, with the importance being high at the start of the season before declining. 

Overall, the results for both models show what would be expected, with the lower positions showing 

importance decreasing rapidly early in the season while the higher positions, who are in the running to claim 

first place, show importance grows as the season progresses. Despite some positions differing slightly, the 
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results are promising and support the theory that the trinomial approach provides similar results to the Monte 

Carlo, without requiring a long run time or complex computer calculations. 

 

 

 

 
Figure 2: Position Specific Importance for Simulation vs. Observed (Division 1) 

 

As previously mentioned, one result observed in Figure 1 was that the observed trinomial distributions 

were slightly lower than the trinomial simulation model, with the distribution for division one Bundesliga 

being the lowest out of the three. To explore this, the standard deviation of points after each round for the three 

trinomial models was calculated and is presented in Figure 3. As seen in Figure 3, the standard deviation of 

points for the trinomial distribution is much lower than the two observed divisions, with division one being 

greater than division two as the season progresses. The result can be explained by the constant match outcome 

probabilities that imply equal team strength, which was implemented with the trinomial simulation. This 

suggests that team strength should be taken into consideration when using simulation to calculate importance. 

We discuss this issue further in the Discussion section of this paper. 
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Figure 3: Standard Deviation of season points for simulated vs. observed seasons  

 

4. DISCUSSION 

One of the most common methods of measuring match importance in professional football is Monte Carlo 

simulation. This method simulates a season a number of times and determines which matches throughout a 

season are critical to a team’s chances of winning the league championship (finish first place). A long runtime 

is usually required for simulation which is usually not ideal. In this paper, we presented a simple model to 

measure match importance, where a trinomial distribution calculates the conditional probability of a team 

finishing first given the outcome of the next match and their current season points total. Not only are the 

number of model inputs dramatically reduced, but computational runtime is reduced compared to the standard 

simulation model. 

As mentioned in the methods section of this paper, the simulation model required a number of iterations to 

generate a season schedule, as well as further iterations to simulate season results and calculate the success 

probabilities. In this paper we elected to use 10,000 iterations for the season schedule and 100 iterations for the 

season results, where the latter was largely determined arbitrarily through trial and error. While it can be 

argued that a larger number of iterations are required to generate the success probability distributions, 100 

iterations was found to provide a sufficient sample size to generate the required success probability 

distributions. Note here that 100 season iterations is not an optimised value, something that can be addressed 

in future research. 

It was found that the average match importance for both divisions in observed seasons were slightly lower 

compared to the trinomial simulation. The standard deviation of the season points to date was also much 

higher in the observed seasons when compared to the simulation. The higher standard deviation for the 

observed data can be explained by the dominance of some teams, whose probability of winning the next 

contest would be far greater than the constant probabilities we have applied (e.g. Bayern Munich, who won 29 

of 34 matches in the 2013/2014 Bundesliga season). Variations in team strength across a division would result 

in larger variations in season total points. This result suggests that team strength should be taken into account 

when measuring match importance, as both our trinomial simulation and observed models assume equal match 

outcome probabilities. The next step in building on this work will look to account for variations in team 

strength by adjusting these probabilities using a Bayesian approach. Such an approach could measure a team’s 

recent form and as a result provide a better indication of their likelihood of winning their current match. 

A key advantage of the trinomial distribution model over the simulation approach is that fewer inputs are 

required, due to the relaxation of match independence assumptions. While this can actually be a drawback, as 

clearly there is some dependence on other teams’ results, the similarity of importance curves indicate that 

using the trinomial distribution model can produce reasonable estimates of match importance while reducing 

the computational runtime. This allows for one to easily calculate match importance during a live season while 

only evaluating the total points of the league leader and the current team of interest. While this paper has only 

focused on the importance of winning the league championship, we believe future work can assess other 

season outcomes, such as qualification for European tournaments or avoiding relegation. 

While the results presented in this paper are promising, quantifying match importance in any professional 

sport remains a difficult task. Measuring match importance can be both subjective and objective; a fan would 
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claim a match is important while the statistics may say otherwise. The best possible approach to actually 

quantifying match importance appears to be through simulation and, as we have discussed in this paper, a 

trinomial distribution approach produces similar results when assessing importance curves. If one were to 

include match importance as a variable in some predictive model, applying the trinomial distribution could 

yield a quick and reasonable result. 

 

5. CONCLUSIONS 

Quantifying match importance in professional football has often been completed using either a retrospective 

measure or complex computer simulation procedures. In this paper, we explored a probabilistic model that 

relaxes match outcome independence assumptions to counteract these drawbacks, finding that the importance 

distributions are similar to a Monte Carlo simulation approach. While the results are promising, further work is 

required to vary the match outcome probabilities to take into account team strength in football. 
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Abstract 
 

The longest professional tennis match, in terms of both time and total games occurred at the first-round of 

Wimbledon 2010 between John Isner and Nicholas Mahut. It lasted 183 games, required 11 hours and 5 

minutes of playing time, with Isner winning 70-68 in the advantage final set. Even with the introduction of a 

tiebreak set at Wimbledon in 1971 long matches still occur and records of long matches can still be broken. 

Was this long match predictable and what are the chances of this record being broken in the future? This book 

will provide insights to these questions by formulating a mathematical model that provides information such as 

chances of players winning the match, reaching the advantage final set and reaching 68-68 all in an advantage 

final set. Hence the mathematics of tennis is concerned with the chances of players winning the match (who is 

likely to win?) and match duration (when is the match going to finish?). These calculations are required prior 

to the start of the match, but also for the match in progress. For example, what are the chances of player A 

winning the match in 4 sets from 1 set all, 3 games all, 30-15 and player A serving? Whilst the mathematics of 

tennis could be of interest to tennis organizations, commentators, players, coaches and spectators; it could also 

be applied to teaching by using the well-defined scoring structure of tennis to teach concepts to students in 

probability and statistics. Such concepts include summing an infinite series, Binomial theorem, backward 

recursion, forward recursion, generating functions, Markov chain theory and distribution theory. The 

mathematics of tennis applied to teaching also allows students to build their own tennis calculator using 

spreadsheets, which in turn could assist in the understanding of probability and statistical concepts, and 

familiarize students with using spreadsheet software such as Excel. 
 

Keywords: Excel, recursion, distributions  
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Statistical Modelling Tools for the Coaching of Elite Tennis Performance 

 
Stephanie Kovalchik

a
 

 
a Victoria University and Tennis Australia, Melbourne, Australia 

Correspondence: skovalchik@tennis.com.au 
 

Abstract 
 

Quantitative feedback is a fundamental tool in the coaching of sports performance. In elite tennis, the primary 

source of quantitative feedback about in-competition performance comes from computer-aided notational 

analysis systems that extract and summarise key performance events from video-recorded matches. As such 

systems have been in use for decades, large databases of performance outcomes have accrued. Although these 

data facilitate the statistical modelling of performance, the use of modelling in feedback systems for elite 

tennis is rare; single-match analyses and simple counts and percentage of events remain the norms for 

performance evaluation. In this talk, I present several novel statistical modelling approaches to contextualize 

the evaluation of performance and identify patterns of play. The developed methods include approaches for 

detecting outlying serve/return performance, measuring serve/return consistency, identifying back-to-the-wall 

and momentum effects, and assessing clutch ability. Visualizations are used to present the findings of each 

approach and make these insights more accessible to non-statisticians. Using specific player applications, I 

demonstrate how these model-based feedback tools can be used by coaches to identify areas where their player 

is in need of performance improvement as well as make the selection of video replays more precise.    
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